Пусть х км/ч - скорость катера, то (х-2) км/ч скорость катера против течения, а (х+2) скорость катера по течению, значит время затраченное по реке: 15/х-2 + 6/х+2, а оно равно времени по озеру: 22/хСоставим уравнение:15/х-2+6/х+2=22/х (каждое слагаемое умножим на "х(х-2)(х+2)15х(х+2)+6х(х-2)=22х^2-8815х^2+30x+6x^2-12x-22x^2+88=0-x^2+18x+88=0x^2-18x-88=0 Д= b^2-4ac= (-18)^2 - 4(1)(-88)= 676x1= -b+-Корень из Дискриминанта / 2а = 18+26/2=22;х2= 18-26/2=-4 Посторонний корень, т.к. скорость не может быть отрицательной.ответ: 22 км/ч
Решим дискриминант и после этого сделаем метод интервала.
x²-3x-4 < 0
Дискриминант:
x²-3x-4 = 0
D = b²-4ac => (-3)²-4*1*(-4) = 9+16 = 25 > 0, 2 корня.
√25 = 5 (можно и в уме)
x =
x₁ =
x₂ =
Корни уравнения: (x+1)(x-4)
На графике будет выглядеть так:
-∞ + - + +∞
00>
-1 4 x
Воспользуемся методом интервала, чтобы понять, в какое направление пойдёт решение:
f (x) = (x+1)(x-4)
f (2) = (2+1)(2-4) = 3*(-2) = -6
ответ: (-∞;-1) ∪ (4;+∞).