На [-π/4;0] таких точек нет, функция определена во всех точках указанного отрезка. Находим y`: y`=(7/cos²x)-7. Находим точки возможных экстремумов: точки, в которых производная обращается в 0 или не существует. y` не существует в точках (π/2)+πk, k∈ Z. y`=0 (7/cos²x)-7=0; (7-7cos²x)/cos²x=0; 7-7cos²x=0 7(1-cos²x)=0 7sin²x=0 sinx=0 x=πn, n∈ Z. Указанному отрезку принадлежит одна точка х=0, но она является крайней правой точкой. На [-π/4;0] y`=7sin²x/cos²x=7tg²x>0 ⇒ функция возрастает на указанном отрезке и наибольшее значение принимает в крайней правой точке, т. е. при х=0. у(0)=7·tg(0) - 7·0+5=5. О т в е т.у= 5 - наибольшее значение функции на [-π/4;0]
1) скорость течения реки Vр = 2.4 км/ч.
2) 65 вопросов.
Объяснение:
1. v1 = v2; t=2 часа.
Путь S=vt.
По течению S1=2(v1+vp);
Против течения S=2(v2-vp).
v1=v2=v. S1-S2=9.6 км.
2(v+vp)-2(v-vp)=9.6;
2v+2vp-2v+2vp=9.6;
4vp=9.6 ;
vp=9.6:4;
vp= 2.4 км/ч.
***
2. Петя - за 60 мин - 13 вопросов;
Ваня за 60 мин - 15 вопросов
Скорость ответов Пети равна 13/60;
Скорость ответов Вани равна 15/60.
Обозначим количество вопросов теста через х.
Тогда Петя затратил на ответы х/(13/60) минут;
а Ваня затратил - х/(15/60) минут;
Разность во времени ответов равна 40 минут.
х/(13/60)-х/(15/60)=40;
60x/13-60х/15=40; (Наименьший общий знаменатель равен 13*15=195 ).
Дополнительные множители 15, 13 и 195;
900х - 780х =7800;
120х=7800;
х=7800/120;
х=65.