Рассмотрим два числа A и В
Пусть A=a²+b² B=c²+d² Надо доказать что A*B=x²+z²
A*B=(a²+b²)*(c²+d²)=a²c² + a²d² + b²c² + b²d² = (a²c² + b²d²) + (a²d² + b²c²) + 2*abcd - 2*abcd = *
1. * = (a²c² +2*ac*bd +b²d²) + (a²d² - 2*ad*bc+ b²c²) = (ac + bd)² + (ad - bc)²
2. *= (a²c² - 2*ac*bd +b²d²) + (a²d² + 2*ad*cd+ b²c²) = (ac - bd)² + (ad + bc)²
Таким образом нашли x₁₂ = ac + - bd и z₁₂ = ad - + bc
доказали что если каждое из двух чисел представимо в виде суммы квадратов двух натуральных чисел, то их произведение также можно разложить в сумму квадратов двух целых чисел
график 1 - y= 2/x
y(1) = 2 (1; 2)
y(2) = 1 (2; 1)
y(0.5) = 4 (1/2 ; 4)
y(4) = 0.5 (4 ; 1/2)
y(-1) = -2 (-1; -2)
y(-2) = -1 (-2; -1)
y(-0.5) = -4 (-1/2; -4)
y(-4) = - 0.5 (-4; -1/2)
начерти координатную вот и поставь данные точки. слева и справа у тебя будет плавная дуга.
y = x+1
точки:
(0; 1)
(1; 2)
(-1; 0)
также ставишь точки и соединяешь - получится прямая. она пересечет гиперболу в двух или в одной точке. ищешь координаты и записываешь.
либо:
2/x = x+1
2 = x(x+1)
2 = x^2 + x
x^2 + x - 2 = 0
d = 1 + 8 = 9
x = (-1 + 3) * 0.5 = 1
х = (-1 - 3) * 0.5 = -2
Объяснение:
.................