ответ:: S6 = 10,2
Объяснение:
1. Для определения суммы шести членов арифметической прогрессии необходимо узнать значение шестого ее члена и только тогда найти S6 по формуле
Sn = (a1 + an) : 2 * n.
2. Известна формула для энного члена арифметической прогрессии
аn = a1 + d *(n - 1).
3. Пользуясь этой формулой вычислим разность прогрессии d.
a4 = a1 + d * 3;
1,8 = 1,2 + 3 d;
d = (1,8 - 1,2) : 3 = 0,6 : 3 = 0,2.
4. Теперь найдем а6.
а6 = а1 + d * 5 = 1,2 + 0,2 * 5 = 1,2 + 1 = 2,2.
5. Отвечаем на во задачи
S6 = (a1 + a6) : 2 * 6 = (1,2 + 2,2) : 2 * 6 = 10,2.
Объяснение:
а) a1 = 30, a2 = 24, d = 24 - 30 = -6
Формула n-ого члена: a(n) = 36 - 6n
b) Найдем количество положительных чисел в этой прогрессии
{ a(n) = 36 - 6n > 0
{ a(n+1) = 36 - 6(n+1) < 0
Раскрываем скобки
{ a(n) = 36 - 6n >= 0
{ a(n+1) = 36 - 6n - 6 = 30 - 6n < 0
Переносим n направо и делим неравенства на 6
{ 6 >= n
{ 5 < n
Очевидно, n = 5
a(5) = 36 - 6*5 = 6
a(6) = 36 - 6*6 = 0
c) Определим количество чисел, если их сумма равна -78.
S = (2a1 + d*(n-1))*n/2 = -78
(2*30 - 6*(n-1))*n = -78*2 = -156
(66 - 6n)*n = -156 = -6*26
Сокращаем на 6
(11 - n)*n = -26
n^2 - 11n - 26 = 0
(n - 13)(n + 2) = 0
Так как n > 0, то n = 13
↓↓↓↓↓↓↓
Объяснение:
a)Log(4-x) имеет смысл если 4-х>0 ,x<4
б)Log₍ₓ₊₄₎ 5 имеет смысл если х+4≠1 , х+4>0 , ответ х≠-3 ,х>-4
в)Log₍ₓ₊₁₎ (2-х) имеет смысл если
{ х+1≠1 , {x≠0
{2-x>0 , {x<2