1. Сложить два известных угла, результат вычесть из 180 градусов.
2. Вычесть известный угол из 90 градусов; сложить известный угол с 90, результат вычесть из 180 градусов.
3. 82
4. 98
5. Отрезок BH образует со стороной АС угол в 90 градусов.
6. Точка M разделит отрезок АС пополам.
7. Отрезок BE разделит угол В пополам.
8. Углы при основании равны; биссектриса, проведенная к основанию, является медианой и высотой
9. Касательная, проведенная к окружности, перпендикулярна радиусу, проведенному к точке касания; из любой точки, лежащей вне окружности, можно провести ровно две касательные к окружности; отрезок, соединяющий точку, лежащую вне окружности, с центром окружности, является биссектрисой угла между касательными, проведенными из этой точки к окружности; отрезки касательных (к одной окружности!), проведенных из одной точки, равны.
10. Медианы делятся в отношении 2:1 считая от вершин треугольника.
Відповідь:
0.32
Пояснення:
Рисунок : квадрат 3×3 ; S□=9 всевозможние пари чисел (х, у). которие принимают значения от [-1; 2]
х+у>1 дает значения в етом квадрате више прямой у=1-х
ух<1 дает область под гиперболой
найдем пересечение гиперболи с квадратом у=2, имеем х=0.5
Тогда площадь под гиперболой S=∫_0.5^2 1/х dx= ln x |_0.5^2=ln 2- ln0.5=1.386.
∫_0.5^2 - Интеграл от 0,5 до 2
Область пар (х,у) можна разбить на 3 области:
хє[-1; 1/2] треугольник, ограничений прямой х+у>1 и сторонами квадрата,
хє(1; 2] - область под гиперболой и еще треугольник, ограничений прямой х+у>1 и прямой у=0, для ує[-1;0]
S△=1/2×(1.5)^2=1.125 для хє[-1; 1/2] & ує[ 1/2;2]
S◁=1/2×1×1=1/2=0.5 для хє[1; 2] & ує[-1;0]
S▽=1/2×(0.5)^2=0.125 треугольник под прямой х+у=1, которий вошел в площу гиперболи, его нужно отнять
для хє[1/2; 1] & ує[1/2;1]
Тогда
P=(S△+S◁+S-S▽)/S□=(1.125+0.5+1.386-0.125)/9=0.32