{a1+ a6=11 a2+a4=10 Выразим а2, а4 , а6 через первый член арифметической прогрессии и разность прогрессии (d) a2=a1+d a4=a1+3d a6=a1+5d и подставим в систему: {a1+a1+5d=11 a1+d+a1+3d=10 {2a1+5d=11 2a1+4d=10 Решим систему методом сложения. Умножим первое уравнение на (-1) и сложим со вторым: {-2a1-5d=-11 + 2a1+4d=10 -d=-1 d=1 2a1+4=10 a1=3 (подставили найденное значение d во второе уравнение системы и нашли первый член прогрессии.) По формуле суммы n-первых членов прогрессии найдём сумму первых шести членов этой прогрессии: S6=(2·3+5 )\2·6=33 (Sn=(2a1+d(n-1))\2·n) ответ:33
Два графика линейной функции имеют вид: у₁=к₁х₁+С₁ и у₂=к₂х₂+С₂
они будут пересекаться если не параллельны, а чтобы они не были параллельны К₁ не должен быть равен К₂, потому что если К₁=К₂ - графики параллельны (например у=5х+2 и у=5х-10 будут параллельны , так как к₁=к₂=5 ) чтобы найти точки пересечения графиков, надо привести их к виду у=кх+С, приравнять правые части и из полученного уравнения найти Х, потом Х подставить в любое из уравнений и найти У, точка с этими координатами (Х; У) - и есть точка пересечения найти точку пересечения графиков у=-3х+3 и у=2х+8 приравняем правые части -3х+3 = 2х+8 все с Х перенесем влево, все без икс - вправо -3х-2х=8-3 -5х=5 х=-1, подставим х=-1 в любое уравнение , например у=-3*(-1)+3 =6, у=6 х=-1, у=6 А(-1;6) точка пересечения
.
.
.
.
.
.
вот так)