М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
45667889
45667889
20.01.2020 23:26 •  Алгебра

Найдите сумму наибольшего и наименьшего значения функции на промежутке [0; 3]. f (x) = 2x ^ 3 + 3x ^ 2-12x + 1

Знайдіть суму найбільшого та найменшого значення функції на проміжку [0;3]. f(x)=2x^3+3x^2-12x+1

👇
Ответ:
саня9999999
саня9999999
20.01.2020

83736:2838388484

Объяснение:

737374747466272:1828374747483

4,5(13 оценок)
Открыть все ответы
Ответ:
Решение:
Обозначим объём работы при рытье котлована за 1(единицу), а количество дней за которое вырывает один экскаватор котлован  за (х) дней, тогда второй экскаватор вырывает котлован за (х-10) дней
Производительность работы первого экскаватора за один день равна:
1/х
второго экскаватора 1/(х-10)
А так как работая вместе экскаваторы вырывают котлован за 12 дней, составим уравнение:
1 : [1/(х)+1/(х-10)]=12
1 : [(х-10*1+ (х)*1)/(х*(х-10)]=12   -здесь мы привели к общему знаменателю
1:  [(х-10+х)/(х²-10х)]=12
(х²-10х)/(2х-10)=12
х²-10х=12*(2х-10)
х²-10х=24х-120
х²-10х-24х+120+0
х²-34х+120=0
х1,2=(34+-D)/2*1
D=√(34²-4*1*120)=√(1156-480)=√676=26
х1,2=(34+-26)/2
х1=(34+26)/2=30 (дней-первый экскаватор вырывает котлован
х2=(34-26)/2=4 - не соответствует условию задачи
Второй экскаватор вырывает котлован за (х-10) или:
30-10=20 (дней)

ответ: Первый экскаватор вырывает котлован за 30дней, второй экскаватор за 20 дней
4,4(13 оценок)
Ответ:
0,2(3)=\frac{23-2}{90}= \frac{21}{90}=\frac{7}{30}.
0,2(6)= \frac{26-2}{90}= \frac{24}{90}=\frac{4}{15}

Как перевести периодическую дробь в обыкновенную:
1) Считаем количество цифр в периоде десятичной дроби. Обозначаем количество цифр за букву k. У нас k=1.
2) Считаем количество цифр, стоящих после запятой, но до периода десятичной дроби. Обозначаем количество цифр за букву m. У нас m=1.
3) Записываем все цифры после запятой (включая цифры из периода) в виде натурального числа. Обозначаем полученное число буквой a. У нас а=23.
4) Теперь записываем все цифры, стоящие после запятой, но до периода, в виде натурального числа. Обозначаем полученное число буквой b. У нас b=2.
5) Подставляем найденные значения в формулу Y+ \frac{a-b}{99...9000..0}, где Y — целая часть бесконечной периодической дроби (у нас Y=0), количество девяток равно k, количество нулей равно m.

Вычислим примеры:
1) 0,2(3)-0,1=\frac{7}{30}-\frac{1}{10}=\frac{7-3}{30}=\frac{4}{30}=\frac{2}{15}=0,1(3)
2) 9\frac{11}{15}-\frac{4}{15}=\frac{146}{15}-\frac{4}{15}=\frac{131}{15}=8,7(3)
4,6(33 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ