Y = x -Lnx Облость определения : x ∈ (0;∞) y ' = (x -Lnx) ' = (x) ' - (Lnx) ' =1 - 1/x =(x - 1)/x Критические точки : y ' = 0 ; (x - 1)/x =0 ; x = 1 ; Эта единстветннуая критическая точка для данной функции Промежутки монотонности: функция убывает ,если y ' ≤ 0 ; (x - 1)/x ≤ 0 т.е. при x ∈ (0;1] функция возрастает, если y ' ≥ 0 ; (x - 1)/x ≥ 0 т.е. при x ∈ [1; ∞ ) Единстветнная точка экстремума : x=1 В этой точке(точка экстремума) функция принимает минимальное значение min(y) = 1 - Ln1=1 - 0 =1
Что бы решить данную систему графически: 1) Мы должны начертить на графике 2 функции по отдельности 2) Найти точки/точку пересечения графиков этих функций и определить координату данной\ых точки\точек. Это координата\координаты и будет решением данной системы.
А теперь давайте решим данную систему графически:
Начертим график функции (во вложении, график параболы)
Теперь начертим график функции ( во вложении, график прямой)
Объединяем 2 графика: (график во вложении)
И видим что 2 графика пересекаются в следующих координатах: (0,0) (2,8) Эти координаты и есть решения данной системы.
Объяснение:
подстановки.
ответ: (2;-1).
сложения.
Суммируем эти уравнения:
ответ: (2;-1).