1. Уравнение касательной y= f(х0) + f'(x0)(x - x0), где х0=3 ( задано в условии). Сгачала ищем производную функции f'(x)= 2*3x-2=6x-2. Теперь найдем производную в точке х0=3 f'(x0)=f'(3)=6*3-2=16. Теперь найдем значение функции в точке х0=3 f(x0)=f(3)=3*3²-2*3+11=27-6+11=32. Все подставляем в уравнение касателтной у=32+16(x-3)=32+16x-48=16x-16 y=16x-16 уравнение касателтной. 2.скорость это первая производная от S, а ускорение это вторая производная. V(t)=S'(t)=16t+3, а при t=3 c V(3)=16*3+3=51. Ускорение а=S''(t)=V'(t)=16.
3. f(x)=15x^4-10x^3+2x-4 Производная от суммы ищется легко, нужно брать производную от каждого слогаемого. Есть таблица простых производных, вот по ней и надо смотреть. При переменных константа сохраняется, для 15х⁴ производная будет 15*4(это степень)*х³(а тут степень на один понижается и т.д. f'(x)=15*4х³-10*3х²+2=60х³-30х²+2. Для 4 производная 0, для х производная 1, поэтому для 2х двойка остается как константа, а вместо х единица, вот и получается просто 2.
а) а9=а1+d(n-1)
a9= -17+ 6*8=31
S9=(a1+a9)/2 * n= (-17+31)/2 * 9 = 63
или S9= (2*a1+ d(n-1))/2 * n = (-34 + 48)/2 * 9 =63
б) S9= (2*a1+ d(n-1))/2 * n = (12.8 + 6.4)/2 * 9 = 9.6 * 9 = 86.4