М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sasha60503
sasha60503
04.09.2020 13:27 •  Алгебра

Назовите коэффициент и степень одночлена а) – 5ab²c³ ; б) 12x с2у; в) 3ху/8 . 2)Приведите многочлен к стандартному виду и назовите степень многочлена:
а) 8ху4х3 – 9х3уу7 + 10сс5;
б )0,2а5вв6 – 1,1хух7 + с8ас
3) Запишите многочлен, расположив его члены по убыванию степени одночлена :
а)19а2-8а+а4-7-3а3;
б)2ас+3а3+а2 с2
4) Приведите подобные слагаемые:
а) 12у2+5х-у2-4х;
б) 0,5с4+0,3с2+с3-0,5с2;
5) Выполните сложение и вычитание многочленов
а) (5m-4n)-(3n-2m);
б) (5x3+3x2-7)+(4+3x2-5x3);
КТО РЕШИТ

👇
Ответ:
riad170310
riad170310
04.09.2020

4 а 3 б 2 а

Объяснение:

вт ответ

4,6(25 оценок)
Открыть все ответы
Ответ:
dashafirman
dashafirman
04.09.2020

Объяснение:

Найти площадь фигуры, ограниченной линиями:

у=х² +6х+12; х=-1; х=-3; у = 0​

Построим указанные кривые на координатной плоскости

у=х² +6х+12 - уравнение параболы. Однозначно строится по трем точкам. Вершина параболы находится в точке с координатами(-3;3).

Еще две точки найдем подставив координаты х = -1 и х = -3 в уравнение параболы

у(-3) = 9 - 18 + 12 = 3

у(-1) = 1 - 6 + 12 = 7

Координаты двух других точек (-3;3) и (-1;7)

Уравнения х=-1; х=-3 на координатной плоскости описывают прямые.

Данные прямые параллельны оси абсцисс  и проходят через точки (-1;0) и (-3;0) соответственно.

Прямая y=0 является осью ординат.

Фигура внутри полученного пересечения снизу ограничена прямой y=0 справа ограничена прямой х = -1, слева прямой х=-3, а сверху ограничена параболой у=х² +6х+12

Для нахождения площади фигуры найдем интеграл с пределами интегрирования от -3 до -1 и  функцией х² +6х+12

S = \int\limits^{-1}_{-3} {(x^2+6x+12)} \, dx=\frac{x^3}{3}+3x^2+12x\left[\begin{array}{ccc}-1&\\-3\end{array}\right] = \frac{-1}{3}+3-12-(-\frac{27}{3}+27-36)= -\frac{1}{3}-9 +18 = 9-\frac{1}{3} = 8,67


Найти площадь фигуры, ограниченной линиями:у=х^2 +6х+12; х=-1; х=-3; у = 0​
4,6(92 оценок)
Ответ:
lap85928
lap85928
04.09.2020

Объяснение:

Найти площадь фигуры, ограниченной линиями:

у=х² +6х+12; х=-1; х=-3; у = 0​

Построим указанные кривые на координатной плоскости

у=х² +6х+12 - уравнение параболы. Однозначно строится по трем точкам. Вершина параболы находится в точке с координатами(-3;3).

Еще две точки найдем подставив координаты х = -1 и х = -3 в уравнение параболы

у(-3) = 9 - 18 + 12 = 3

у(-1) = 1 - 6 + 12 = 7

Координаты двух других точек (-3;3) и (-1;7)

Уравнения х=-1; х=-3 на координатной плоскости описывают прямые.

Данные прямые параллельны оси абсцисс  и проходят через точки (-1;0) и (-3;0) соответственно.

Прямая y=0 является осью ординат.

Фигура внутри полученного пересечения снизу ограничена прямой y=0 справа ограничена прямой х = -1, слева прямой х=-3, а сверху ограничена параболой у=х² +6х+12

Для нахождения площади фигуры найдем интеграл с пределами интегрирования от -3 до -1 и  функцией х² +6х+12

S = \int\limits^{-1}_{-3} {(x^2+6x+12)} \, dx=\frac{x^3}{3}+3x^2+12x\left[\begin{array}{ccc}-1&\\-3\end{array}\right] = \frac{-1}{3}+3-12-(-\frac{27}{3}+27-36)= -\frac{1}{3}-9 +18 = 9-\frac{1}{3} = 8,67


Найти площадь фигуры, ограниченной линиями:у=х^2 +6х+12; х=-1; х=-3; у = 0​
4,5(16 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ