а) (x²-1)(x² - 5x + 4) < 0 Разложим квадратные трехчлены на множители (х-1)(х+1)(х-1)(х-4) < 0 (x-1)²(x+1)(x-4) < 0 Находим нули функции х-1=0 х+1=0 х-4=0 х=1 х=-1 х=4 Отмечаем точки на числовой прямой пустым кружком ( мы - круглыми скобками) и расставляем знаки + - _ + (-1)(1)(4) ответ. (-1; 1)U(1;4)
б) (x² - 5x + 6)(x² - 3x +2) <0 Разложим квадратные трехчлены на множители (х-2)(х-3)(х-1)(х-2) < 0 (x-2)²(x-3)(x-1) < 0 Находим нули функции х-2=0 х-3=0 х-1=0 х=2 х=3 х=1 Отмечаем точки на числовой прямой пустым кружком ( мы - круглыми скобками) и расставляем знаки при х = 10 (10-2)²(10-3)(10-1)>0 На (3;+∞) , содержащем х=10 ставим знак +, далее влево -, при прохождении через точку 2 знак не меняется, так как множитель (х-2) входит в неравенство в степени 2. И на последнем интервале слева снова знак + + - - + (1)(2)(3) ответ. (1; 2)U(2;3)
ответ:: S6 = 10,2
Объяснение:
1. Для определения суммы шести членов арифметической прогрессии необходимо узнать значение шестого ее члена и только тогда найти S6 по формуле
Sn = (a1 + an) : 2 * n.
2. Известна формула для энного члена арифметической прогрессии
аn = a1 + d *(n - 1).
3. Пользуясь этой формулой вычислим разность прогрессии d.
a4 = a1 + d * 3;
1,8 = 1,2 + 3 d;
d = (1,8 - 1,2) : 3 = 0,6 : 3 = 0,2.
4. Теперь найдем а6.
а6 = а1 + d * 5 = 1,2 + 0,2 * 5 = 1,2 + 1 = 2,2.
5. Отвечаем на во задачи
S6 = (a1 + a6) : 2 * 6 = (1,2 + 2,2) : 2 * 6 = 10,2.