Вариант Алекса Ларина 260 Сегодня нужно всё сделать В номере 10 нужно разделить количество выученных билетов на общее количество и ответ записать в виде десяти ной дроби В номере 11 начните с нахождения вершин парабол
{1;3;5;...;99} -множество нечётных чисел меньших 100 Сколько их? а₁=1; a₂=3 => d=a₂-a₁=3-1=2 a(n)=99 a(n)=a₁+d(n-1) 1+2(n-1)=99 2(n-1)=98 n-1=49 n=50 - количество нечётных чисел меньших 100
{3;9;15;...;99} - множество нечётных чисел кратных числу 3 и меньших 100 Сколько их? a₁=3, a₂=9 => d=a₂-a₁=9-3=6 a(m)=99 a(m)=a₁+d(m-1) 3+6(m-1)=99 6(m-1)=96 m-1=16 m=17 - количество нечётных чисел кратных числу 3 и меньших 100
{5;15;25;...;95} - множество нечётных чисел кратных числу 5 и меньших 100 а₁=5; а₂=15 => d=a₂-a₁=15-5=10 a(p)=a₁+d(p-1) 5+10(p-1)=95 10(p-1)=90 p-1=9 p=10 - количество нечётных чисел кратных числу 5 и меньших 100
Среди нечётных чисел кратных числам 3 и 5 одновременно встречаются числа 15; 45 и 75 (всего их 3) Общее количество нечётных натуральных чисел, делящихся на 3 или на 5: m+p-3=17+10-3=24
Количество нечётных натуральных чисел, которые не делятся ни на 3, ни на 5 равно: 50-24=26
(x-2)^(x²-6x+8)>(x-2)⁰
1. пусть х-2>1. x>3,
тогда x²-6x+8>0. x²-6x+8=0. x₁=2,x₂=4
+ - +
(2)(4)>x
x∈(-∞;2)U(4;∞)
/ / / / / / / / / / / / / / / /
(2)(3)(4)>x
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
x∈(4;∞)
2. пусть 0<х-2<1, 2<x<3
тогда, x²-6x+8<0
x∈(2;4)
/ / / / / / / / / / / / / /
(2)(3)(4)>x
\ \ \ \ \ \ \
x∈(2;3)
ответ: x∈(2;3)U(4;∞)