1) Любое чётное число можно записать в виде 2n, n- натуральное число при n=1 получим первое четное число, равное 2 при n=2 - второе число, равное 4
при n=10 - десятое число, равное 20 при n=99 - девяносто девятое число, равно 198 2) Любое нечётное число можно записать в виде 2k-1, k - натуральное число при k=1 получим первое нечетное число, равное 2·1-1=1 при k=2 - второе число, равное 2·2-1= 3
при k=12 - двенадцатое число, равное 2·12-1=23
при k=77 - семьдесят седьмое число, равное 2·77-1=153.
Подробное объяснение: 1) Ищем нули функции: первая скобка равна нулю при х=-2 вторая скобка равна нулю при х=4 2) Рисуем числовую ось и расставляем на ней найденные нули функции - точки -2 и 4 (-2)(4) Точки рисуем с пустыми кружочками ("выколотые"), т.к. неравенство у нас строгое (знак < )
3) Начинаем считать знаки на каждом интервале, начиная слева-направо. Для этого берём любую удобную для подсчёта точку из интервала, подставляем её вместо икс и считаем знак: 1. х=-100 -100+2 <0 знак минус -100-4 <0 знак минус минус*минус=плюс Ставим знак плюс в крайний левый интервал + (-2)(4)
2. аналогично, х=0 0+2 >0 знак плюс 0-4 <0 знак минус плюс*минус=минус + _ (-2)(4)
3. x=100 100+2>0 знак плюс 100-4>0 знак плюс плюс*плюс=плюс + - + (-2)(4)
Итак, знаки на интервалах мы расставили. Смотрим на знак неравенства: < 0 Значит, нам надо взять только те интервалы, где стоят минусы. В данном случае, такой интервал один (-2;4) Это и есть ответ.
Теперь краткая запись решения: (х+2)(х-4)<0 + - + (-2)(4)
2n, n- натуральное число
при n=1 получим первое четное число, равное 2
при n=2 - второе число, равное 4
при n=10 - десятое число, равное 20
при n=99 - девяносто девятое число, равно 198
2)
Любое нечётное число можно записать в виде
2k-1, k - натуральное число
при k=1 получим первое нечетное число, равное 2·1-1=1
при k=2 - второе число, равное 2·2-1= 3
при k=12 - двенадцатое число, равное 2·12-1=23
при k=77 - семьдесят седьмое число, равное 2·77-1=153.