1) Формула, задающая линейную функцию, имеет вид у = kx + b.
Так как прямая параллельна прямой у = - 2x +7, то угловые коэффициенты прямых равны, k = - 2, формула имеет вид у = - 2х + b.
2) Прямая у = - 2х + b проходит через точку А( - 2; - 4), тогда
- 4 = - 2•(-2) + b
- 4 = 4 + b
- 4 - 4 = b
- 8 = b
Формула примет вид: у = - 2х - 8.
ответ: у = - 8 - 2х.
2) у = (х - 3)² - (х - 2)(х + 4)
у = х² - 6х + 9 - (х² + 4х - 2х - 8) = х² - 6х + 9 - х² - 4х + 2х + 8 = - 8х + 17.
у = - 8х + 17
k = - 8; b = 17.
ответ: k = - 8; b = 17.
3) Первый предел равен нулю, т.к. знаменатель быстрее стремится к бесконечности. И есть правило, если х стремится к бесконечности, то смотрим на стандартный вид многочленов числителя и знаменателя, если степень многочлена, стоящего в числителе выше, чем степень многочлена знаменателя, то ответ бесконечность, если ниже, то нуль, у нас как раз этот случай, а если показатели степеней равны, то ищем при максимальных одинаковых показателях отношение коэффициентов.
6) Во втором пределе если подставить 3, числитель обратится в нуль, ровно как и знаменатель, эту неопределенность устраняют разложением числителя на множители (х-3)(х²+3х+9²)/(х-3) и сокращением на (х-3), тогда после сокращения получим 3²+3*3+9=27
9) У третьего предела такая же беда. Разложим по формуле числитель и вынесем за скобку общий множитель из знаменателя, убираем неопределенность путем сокращения дроби.
(х-1)²/(х*(х-1)(х+1))=(х-1)/(х*(х+1))=(1-1)/(1*2)=0
ответ 3) 0
6)27
9) 0
x=1
x=22
Объяснение:
1)10x+5-9x-3=3
x+2=3
x=1
2)0.9x+1.8=0.8x+4
0.9x-0.8x=4-1.8
0.1=2.2
x=22