Равные по условию ∠А и ∠В- накрестлежащие при пересечении двух прямых секущей CD⇒ АС║BD. Углы при О равны как вертикальные. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны. ∆ АСО и ∆ ВDО подобны по первому признаку подобия треугольников. Из подобия следует отношение: СО:OD=AO:OB 4:6=5:ОВ⇒ ОВ=30:4=7,5 Коэффициент подобия равен отношению сходственных сторон. k=СО:OD= 4/6=2/3⇒ АС:ВD=2/3 Отношение площадей подобных треугольников равно квадрату коэффициента их подобия: SAOC:SBOD =k²=(2/3)²=4/9
1)меняем знаки
х2+12х+36=0
а=1 в=12 с=36
2)решаем по Д
Д=144 - 4*1*36=0 Д=0 ,поэтому корень будет только один
х=-12/2
х=-6