а) Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
S-путь от A до B,V1-скорость первой машины,V2-скорость второй. t1-время,сколько проходит 2/5 пути первая машина, t2-время за сколько проходит 2/15 пути вторая машина. 0,4S/V1 = t1. 2S/15*V2 = t(2).При этом t1=t2 + 2 по условию задачи. Приравниваем: 2S/5V1 = 2S/15V2 + 2. Т.е. 2S/5V1=[2S +30V2]/15V2. Затем переносишь правую часть влево,приводишь к общему знаменателю,решаешь квадратное уравнение относительно двух переменных- v(1) и v(2).Выражаешь тем самым одну через другую.Один вариант убирается,т.к. отрицательный получается.Остается v(2)=2v(1) /3. Затем воспользуемся их встречей.Они ехали 6 часов.Значит t=6.Это время одинаково для обоих.Они встретились значит расстояния,в сумме которые дают S. Значит, S=6v(1) + 6v(2)=6[v(1)+v(2)] Подставляешь вместо v(2) 2v(1)/3.Получаешь S=10v(1).Здесь 10-время.Т.е. первый пройдет этот путь за 10 часов.Затем вместо v(1) подставляешь 1,5v(2).Получается S=15v(2).Т.е второй автомобиль пройдет этот путь за 15 часов.
В решении.
Объяснение:
Дана функция y=√x
а) Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
у=√х
1) А(63; 3√7)
3√7 = √63
3√7 = √9*7
3√7 = 3√7, проходит.
2) В(49; -7)
-7 = ±√49
-7 = -7, проходит.
3) С(0,09; 0,3)
0,3 = √0,09
0,3 = 0,3, проходит.
б) х ∈ [0; 25]
y=√0 = 0;
y=√25 = 5;
При х ∈ [0; 25] у∈ [0; 5].
в) Найдите значения аргумента, если у∈ [9; 17]
у = √х
9=√х х=9² х=81;
17=√х х=17² х=289.
При х ∈ [81; 289] у∈ [9; 17].