1)Решение системы уравнений х=3
у=2
2)Система имеет бесконечное множество решений.
3)Система уравнений не имеет решений.
Объяснение:
Решите графически систему уравнений:
1) -x+3y=3
x-y=1
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
-x+3y=3 x-y=1
3у=3+х -у=1-х
у=(3+х)/3 у=х-1
Таблицы:
х -3 0 3 х -1 0 1
у 0 1 2 у -2 -1 0
Согласно графика, координаты точки пересечения графиков данных уравнений (3; 2)
Решение системы уравнений х=3
у=2
2)x+y=0
3x+3y=0
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
x+y=0 3x+3y=0
у= -х 3у= -3х
у= -3х/3
у= -х
Таблицы:
х -1 0 1 х -1 0 1
у 1 0 -1 у 1 0 -1
Графики сливаются, система имеет бесконечное множество решений.
3)x-y=2
2x+5=2y
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
x-y=2 2x+5=2y
-у=2-х -2у= -2х-5
у=х-2 2у=2х+5
у=(2х+5)/2
Таблицы:
х -1 0 1 х -1 0 1
у -3 -2 -1 у 1,5 2,5 3,5
Прямые параллельны, система уравнений не имеет решений.
В решении.
Объяснение:
Составьте математическую модель задачи и решите ее:
Катер 30 км против течения реки и 12 км по течению за то же время, за которое он может пройти по озеру 44 км. Определите скорость катера по озеру, если скорость течения реки составляет 2 км/ч.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - собственная скорость катера (по озеру).
х + 2 - скорость катера по течению.
х - 2 - скорость катера против течения.
44/х - время катера по озеру.
12/(х + 2) - время катера по течению.
30/(х - 2) - время катера против течения.
По условию задачи уравнение (математическая модель):
12/(х + 2) + 30/(х - 2) = 44/х
Умножить все части уравнения на х(х - 2)(х + 2), чтобы избавиться от дробного выражения:
12*х(х - 2) + 30*х(х + 2) = 44*(х² - 4)
12х² - 24х + 30х² + 60х = 44х² - 176
42х² - 44х² + 36х + 176 = 0
-2х² + 36х + 176 = 0/-2
х² - 18х - 88 = 0, квадратное уравнение, ищем корни:
D=b²-4ac =324 + 352 = 676 √D=26
х₁=(-b-√D)/2a
х₁=(18-26)/2
х₁= -8/2 = -4, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(18+26)/2
х₂=44/2
х₂=22 (км/час) - скорость катера по озеру.
Проверка:
30/20 + 12/24 = 1,5 + 0,5 = 2 (часа);
44/22 = 2 (часа);
2 = 2, верно.