Обозначим через x км/ч скорость теплохода в неподвижной воде. Тогда, его скорость по течению равна x+5 км/ч, а против течения x-5 км/ч. Сначала теплоход идет по течению реки 80 км, на которые он затратил часов. Затем, он стоит 23 часа, после чего движется в обратном направлении часов. В сумме он затратил на весь путь 35 часов. Получаем уравнение:
откуда
Решаем квадратное уравнение, получаем два корня:
Так как скорость теплохода не может быть отрицательным числом, то получаем ответ 15 км/ч.
а) Сумма равна 1, это одна возможная комбинация: {0} {1}, поэтому: б) Сумма равная 2, это ({0};{2}), можно было бы составить другой комбинацией, но у нас нет двух карточек с единицами, поэтому вероятность так же равна: в) Сумма равна 3, это ({0};{3}) или ({1};{2}) Вероятность равна: г) Сумма равна 6, это ({0};{6}) ({1};{5}) ({2};{4}) Вероятность равна: д) Сумма равна 9, это: ({0};{9}) ({1};{8}) ({2};{7}) ({3};{6}) ({4};{5}) Вероятность равна: Таким образом, можно заметить, что вероятность зависит только от кол-ва составлений данного числа другими числами с карточек.
Обозначим через x км/ч скорость теплохода в неподвижной воде. Тогда, его скорость по течению равна x+5 км/ч, а против течения x-5 км/ч. Сначала теплоход идет по течению реки 80 км, на которые он затратил часов. Затем, он стоит 23 часа, после чего движется в обратном направлении часов. В сумме он затратил на весь путь 35 часов. Получаем уравнение:
откуда
Решаем квадратное уравнение, получаем два корня:
Так как скорость теплохода не может быть отрицательным числом, то получаем ответ 15 км/ч.
ответ: 15.