График квадратного трёхчлена y = 2/√3 * x^2 + bx + c пересекает оси координат в трёх точках K, L и M, как на рисунке ниже. Оказалось, что KL=KM и ∠LKM=120∘. Найдите корни данного трёхчлена. Введите оба корня — каждое число в отдельное поле ввода в произвольном порядке.
расстояние 96 км; скорость течения --- 5 км/час; время против течения --- ?,час, но на 10>, чем по течению; собств. скорость лодки ? км/час Решение. Х км/час скорость лодки в неподвижной воде ( собственная скорость ); (Х - 5) км/час скорость против течения; 96/(Х-5) час время, затраченное против течения; (Х + 5) км/час скорость по течению; 96/(Х+5) час время, затраченное по течению; 96/(Х-5) - 96/(Х+5) = 10 (час) разница во времени по условию; приведем дроби к общему знаменателю (Х+5)(Х-5) = (Х^2 - 25) и умножим на него все члены уравнения: 96(Х+5) - 96*(Х-5) = 10*(X^2 - 25); 96Х + 96*5 - 96Х + 96*5 = 10X^2 - 250; 10Х^2 = 1210; X^2 = 121; Х = 11(км/час). Отрицательную скорость ( второй корень уравнения) а расчет не принимаем! ответ : Скорость лодки в неподвижной воде 11 км/час. Проверка: 96:(11-6) - 96:(11+6) = 10; 10 = 10
1) F`(x)=3x²-6x-9 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²-6x-9=0 3·(x²-2x-3)=0 x²-2x-3=0 D=16 x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов Обе точки принадлежат указанному промежутку Не проверяя какая из них точка максимума, какая точка минимума, просто находим F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2) F`(x)=3x²+18x-24 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²+18x+24=0 3·(x²+6x+8)=0 x²+6x+8=0 D=36-4·8=36-32=4 x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов Обе точки не принадлежат указанному промежутку
Дан график y = (2/√3)x² + bx + c и условия: KL=KM, ∠LKM=120∘, где L, K и M точки пересечения осей.
Примем координаты корней на оси Ох: х1 и х2.
Координата точки М по у равна коэффициенту с из уравнения.
Из треугольника МОК с учётом угла 180 - 120 = 60 находим соотношение: с = х1*tg60 = x1*√3.
Далее используем равенство KL=KM.
KL=KM = √((х1)² + (x1*√3)²) = √((х1)² + 3(х1)²) = √(4((х1)²) = 2*х1.
Отсюда находим: х2 = х1 + 2х1 = 3х1.
Далее используем теорему Виета для корней.
Для этого надо разделить коэффициенты уравнения на а (2/√3).
Получаем уравнение y = x² +(b/(2/√3))x + c/(2/√3).
Для определения корней правую часть приравняем нулю.
x² +(b/(2/√3))x + c/(2/√3) = 0.
По Виета х1*х2 = c/(2/√3). Заменим с = x1*√3 и х2 = 3х1.
3(х1)² = x1*√3/(2/√3). После сокращения получаем:
х1 = 1/2. Это найден первый корень.
Второй равен 3х1 = 3*(1/2) = 3/2.
ответ: корни равны (1/2) и (3/2).