Порассуждаем.
Площадь ромба - это половина произведения его диагоналей. Произведение диагоналей вдвое больше: 96*2 = 192.
Диагонали ромба разбивают его площадь на 4 равных прямоугольных треугольника. Возьмём один такой треугольник. Сторона ромба - гипотенуза такого треугольника (стороны ромба равны). Значит, произведение катетов (катеты - половины диагоналей, так как в ромбе точкой пересечения диагонали разбиваются пополам) этого треугольника в 4 раза меньше произведения диагоналей: 192:4 = 48.
По условию, одна диагональ (а значит, и один из катетов нашего треугольника) в 3 раза больше другой. Значит, половина меньшей диагонали равна √48:3 = 4 см, а половина большей - 4*3 = 12 см.
Итак, у нас есть прямоугольный треугольник с катетами 4 см и 12 см, нужно найти его гипотенузу (напомним себе, что искомая гипотенуза есть сторона ромба). Воспользуемся теоремой Пифагора: 4² + 12² = 160, гипотенуза равна квадратному корню из суммы квадратов катетов: √160 = 4√10.
Таким образом, сторона ромба равна 4√10. Ромб - параллелограмм с равными сторонами, следовательно, все стороны ромба равны друг другу и составляют длину в 4√10 см.
ответ: 4√10 см.
По теореме косинусов
64*3 = r^2 + r^2 - 2* r^2 * cos 120
192 =2 * r^2 + 2 * r^2* cos 60
192 =2 * r^2 + 2 * r^2* 1/2
192 = 3* r^2
r^2 = 64 см
r = 8 см
Из треугольника АОС, т к. угол осевого сечения при вершине С равен 90 градусов
угол САО = угол ОСА = 45 гр. , следовательно СО =ОА = 8 см
Из треугольника ОВК:
ОК = (64 — 16*3)^(1/2) = 4
Из треугольника КОС
КС = (СО^2 + OR^2)^(1/2) = (64 +16)^(1/2) = 4*(5)^(1/2)
Итак, искомая площадь
S = 1/2*AB*CK = 1/2 * 8*(3)^(1/2)*4*(5)^(1/2) = 16*(15)^(1/2) cм^2
ответ: S = 16*(15)^(1/2) cм^2
45
Объяснение
Вроде правильно