Доказательство методом математической индукции База индукции. При n=1 утверждение справедливо. Действительно
Гипотеза индукции. Пусть утверждение выполняется для некоторого натурального n=k, т.е. верно равенство
Индукционный переход. Докажем что тогда утверждение справедливо при n=k+1, т.е. что справедливо равенство или переписав правую сторону равенства, предварительно упростив
используем гипотезу
Согласно принципу математической индукции данное утверждение справедливо для любого натурального n. Доказано
x>3
x<4
Объяснение:
2x-1>5 2x>5+1 2x>6 x>3
2x-1<7 2x<7+1 2x<8 x<4