Объяснение:
г) 3/(y-2) +7/(y+2)=10/y, где
y-2≠0; y≠2
y+2≠0; y≠-2
y≠0
(3y(y+2)+7y(y-2)-10(y-2)(y+2))/(y(y-2)(y+2))=0
3y²+6y+7y²-14y-10y²+40=0
40-8y=0
y=40/8=5
ответ: 5.
д) (x+3)/(x-3) +(x-3)/(x+3)=3 1/3, где
x-3≠0; x≠3
x+3≠0; x≠-3
((x+3)(x+3)+(x-3)(x-3))/((x-3)(x+3))=10/3
3((x+3)²+(x-3)²)=10(x²-9)
3(x²+6x+9+x²-6x+9)=10x²-90
10x²-90-6x²-54=0
4x²-144=0 |4
x²=36
x=±6
ответ: -6 и 6.
е) (5x+7)/(x-2) -(2x+21)/(x+2)=8 2/3, где
x-2≠0; x≠2
x+2≠0; x≠-2
((5x+7)(x+2)-(2x+21)(x-2))/((x-2)(x+2))=26/3
3(5x²+10x+7x+14-2x²+4x-21x+42)=26(x²-4)
9x²+168=26x²-104
26x²-9x²=168+104
x²=272/17
x=±√16=±4
ответ: -4 и 4.
С этого метода постановки практически всегда можно решить систему уравнений.
Алгоритм решения системы двух уравнений с двумя переменными методом подстановки:
1. из любого (обычно более уравнения системы выразить одно неизвестное через другое,
например, x через y из первого уравнения системы;
(Чтобы выразить неизвестное, нужно выполнить два условия:
1-перенести неизвестное, которое хотим выразить, в левую часть уравнения;
2- разделить и левую и правую часть уравнения на нужное число так, чтобы коэффициент при неизвестном стал равным единице. )
2. подставить полученное выражение в другое (второе) уравнение системы вместо x;
3. решить уравнение с одним неизвестным относительно y (найти y);
4. подставить найденное на третьем шаге значение y в уравнение,
полученное на первом шаге, вместо y и найти x;
5. записать ответ мой ответ в лучшие)))
Решение в файле!
Объяснение: