Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.
тогда знаменатель = х+4.
после изменений числ-ль = х+5, знам-ль такой же.
если полученная дробь должна быть в 1/2 больше исходной, то
(х+5)/(х+4) / х/(х+4) = 1/2
(х+5)/(х+4) * (х+4)/х = 1/2
(х+4) сокращается
(х+5)/х = 1/2
х+5 = х/2
х = -10.
следовательно х/(х+4) = -10/-6 = 5/3 = 1 целая 2/3
если полученная дробь должна быть на 1/2 больше исходной, то
(х+5)/(х+4) - х/(х+4) = 1/2
(х+5-х)/(х+4) = 1/2
5/(х+4) = 1/2
5/(х+4) = 5/10
х+4 = 10
х = 6.
следовательно х/(х+4) = 6/10 = 3/5 = 0,6