Объяснение:
Участвовало всего: 76 человек.
В обеих олимпиадах: 15 человек.
Следовательно, из 76 человек
15 - дважды принимали участие
76-15 = 61 чел. - только 1 раз
Пусть,
х - число участников по математике
у - число участников по физике
Причем, очевидно что без учета 15 принимавших участие в обеих олимпиадах имеем:
(х-15)+(у-15)=61
х+у-30=61
х+у=91
Выразим х и у по отдельности:
х = 91-у
у= 91-х
Т.к. х, у - это число участников, то эти числа должны быть целыми.
И если предположить, что допустим
х - меньше 46, то
при х < 46 этот х может быть равен 45, 44 и т.д
Поэтому при целых значениях
х < 46, равнозначно неравенству х ≤ 45.
Т.е. при х ≤ 45:
х = 91 - у
91 - у ≤ 45
91 - 45 ≤ у
у ≥ 91 - 45
у ≥ 46
А при у < 46, (при у ≤ 45)
у = 91 - х
91 - х ≤ 45
х ≥ 46
Как мы видим, при любых значениях х или у одно из них обязательно будет равно или больше 46
А значит, в какой-то олимпиаде обязательно приняли участие не менее 46 человек.
Ч.Т.Д.
По условию число делится на 5, значит, оно заканчивается на 5 или на 0.
Но число переписанное в обратном порядке четырехзначное число, то это означает, что первоначальное число заканчивается только на 5.
(1000х+100у+10с+5) - исходное число,
где
1≤x≤9;
0≤y≤9;
0≤с≤9.
(5000+100с+10у+х) - новое число
По условию:
(1000х+100у+10с+5) - (5000+100с+10у+х) = 1629
1)
1000х+100у+10с+5 - 5000-100с-10у-х = 1629
1000х+100у+10с - 5000-100с-10у-х = 1629-5
1000х+100у+10с - 5000-100с-10у-х = 1624
Найдём из этого х.
0-x=4 => x =-4 - не подходит
другой вариант: 10-x=4 => x=6
2)
Подставим х=6
1000*6+100у+10с - 5000-100с-10у-6 = 1624
6000+100у+10с - 5000-100с-10у = 1624+6
1000+100у+10с -100с-10у = 1630
90у-90с=630
Обе части разделим на 90.
у-с=7
с=у-7 (ОДЗ: у-7>=0; y>=7)
1) при у=9; с=9-7 => с=2
Получим число 6925.
2) при у=8; с=8-7 => с=1
Получим число 6815
3) при у=7; с=7-7 => с=0
Получим число 6705
Итак мы получили три числа, удовлетворяющих решению:
6925; 6815; 6705
Проверка.
6925 – 5296 = 1629;
6815 – 5186 = 1629;
6705 – 5076 = 1629
ответ: 6925; 6815; 6705