Объяснение:№2. 1) f(x)= 4/(x-1), функция имеет смысл, если х≠1; значит D(f)= (-∞;1)∪(1; +∞). 2)Найдём производную: f'(x)=-4/(x-1)² 3) x=1 критическая точка, т.к. производная в этой точке не имеет смысла; 4 ) f'(x)<0, если х∈ (-∞;1)∪(1; +∞). Значит на (1; +∞) функция у=f(x) убывает, чтд.
№3. f(x)= 3 - √(1-x²) 1) функция имеет смысл, если 1-x²≥0 ⇒ -1≤х≤1, т.е. D(f)= [-1;1]. 2) найдём производную функции f'(x)=-1/2√(1-x²) · (1-x²)' = 2x/2√(1-x²) = x/√(1-x²)
f'(x) = x/√(1-x²) 3)Найдём критические точки, решив уравнение f'(x) =0, ⇒ x/√(1-x²)=0 ⇒ x=0-критическая точка 4)Найдём знаки производной в окрестности критической точки на всей области определения:
на промежутке (-1;0), f'(x)<0; на (0; 1) , f'(x)>0 5) Так как при переходе через критическую точку х=0 производная меняет знак с минуса на плюс, то это точка минимума, f(0)=2 6) Найдём значения функции на концах промежутка D(f): f(±)=3
ответ: min f(x)=f(0)=2, max f(x)=f(±1)=3
№4. Если f(x) возрастающая функция, а g(x)=3-2x -убывающая, то f(g(x))- тоже убывающая.
Пусть исходное число было abcd, тогда записанное в обратном порядке число dcba. По разности 909 можно заметить, что такое возможно, только, если a>d. Распишем по разрядным слагаемым:
abcd=1000a+100b+10c+d
dcba=1000d+100c+10b+a
По условию:
abcd-dcba=909
1000a+100b+10c+d-1000d-100c-10b-a=909
999a-999d+90b-90c=909
999(a-d)+90(b-c)=909
111(a-d)-10(c-b)=101
Поскольку a>d, то единственный возможный вариант - это a-d=1, при (a-d)>1, например 2: 222-10(с-b)>101, а значит:
111-10(c-b)=101
10(c-b)=10
c-b=1 ⇒
a=d+1, из чего видно, что d≤8
c=b+1, из чего видно, что b≤8
Есть еще условие, что сумма цифр кратна 3.
a+b+c+d=2d+1+2b+1=2(d+b+1) ⇒ поскольку сумма цифр четная, то остается единственный вариант: 2(d+b)+2=6n максимально возможное 30d+b=14 Подбираем максимальное: а=9 d=8 b=14-8=6 c=7 9678-8769=909
Объяснение:№2. 1) f(x)= 4/(x-1), функция имеет смысл, если х≠1; значит D(f)= (-∞;1)∪(1; +∞). 2)Найдём производную: f'(x)=-4/(x-1)² 3) x=1 критическая точка, т.к. производная в этой точке не имеет смысла; 4 ) f'(x)<0, если х∈ (-∞;1)∪(1; +∞). Значит на (1; +∞) функция у=f(x) убывает, чтд.
№3. f(x)= 3 - √(1-x²) 1) функция имеет смысл, если 1-x²≥0 ⇒ -1≤х≤1, т.е. D(f)= [-1;1]. 2) найдём производную функции f'(x)=-1/2√(1-x²) · (1-x²)' = 2x/2√(1-x²) = x/√(1-x²)
f'(x) = x/√(1-x²) 3)Найдём критические точки, решив уравнение f'(x) =0, ⇒ x/√(1-x²)=0 ⇒ x=0-критическая точка 4)Найдём знаки производной в окрестности критической точки на всей области определения:
на промежутке (-1;0), f'(x)<0; на (0; 1) , f'(x)>0 5) Так как при переходе через критическую точку х=0 производная меняет знак с минуса на плюс, то это точка минимума, f(0)=2 6) Найдём значения функции на концах промежутка D(f): f(±)=3
ответ: min f(x)=f(0)=2, max f(x)=f(±1)=3
№4. Если f(x) возрастающая функция, а g(x)=3-2x -убывающая, то f(g(x))- тоже убывающая.