Если графики пересекаются, значит имеют общую точку (х;у). Тогда можно сделать вывод, что 3х-3=х-1 (х-1 взято из у+1-х=0, если у оставить в одной стороне, а другое перенести, то получится х-1) Решаем как обычное линейное уравнение 3х-3=х-1 2х=2 х=1 Подставим значение х в любое из уравнений, получится что у=х-1 у=1-1 у=0 Подставляем значения как координаты точки и пересечения и получаем, что (1;0) точка пересечения
Y'=3x^2-27; y'=0; 3x^2-27=0; x^2=9; x1=-3; x2=3. Это критические точки, причем обе нах-ся в заданном интервале.Узнаем, кто из них кто: максимум или минимум. ДЛя этого найдем значения производной в точке х=4 , а потом знаки будем чередовать, так как здесь нет уравнения четной степени. y'(4)=3*4^2-27=48-27=21>0; y'(2)=3*2^2-27=-9<0; y'(-4)=3*(-4)^2-27=48-27=21>0. Видно, что в точке х=-3 производная меняет знак с плюса на минус, это точка максимума. Найдем значение ф-ции в этой точке у наиб.=у(-3)=(-3)^3-27*(-3) +3=-27+81+3=57; В точке х=3 производная меняет знак с минуса на плюс_ это точка минимума и здесь будет наим. значение ф-ции. у наим=у(3)=3^3-27*3+3=27-81+3=-51.
2х=2
х=1
Подставим значение х в любое из уравнений, получится что у=х-1
у=1-1
у=0
Подставляем значения как координаты точки и пересечения и получаем, что (1;0) точка пересечения