Функция y = x + 4/3 является линейной, т.к. здесь х в первой степени. Эта функция в общем виде может быть представлена как y = ax + b, где a и b - любые числа ( в нашем случае a = 1, а b = 4/3).
Функция y = x (x + 2) / x может быть преобразована в линейную только при условии, что x не равен 0 (при этом условии можно правую часть выражения сократить на х и получить y = x + 2), но в т.к. функция задана общем виде, без этого ограничения, то она не является линейной. Две последние функции содержат х в отрицательной степени (степень х равна -1), они обе не являются линейными.
Имеем 4 места для размещения цифр. Всего цифр десять: 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9. Девятку можно поставить на любое из четырёх мест На остальные места размещаем оставшиеся цифры, учитывая, что все они должны быть различны, получаем: на первое из трёх оставшихся мест можно поставить любую их 9-ти цифр (девятку нельзя, остаётся 10-1=9 цифр); на второе из оставшихся мест ставим любую из оставшихся 8-ми цифр; на третье - любую из оставшихся семи цифр. Перемножаем полученное количество расстановки: 4*9*8*7=2016 ответ: Ване придётся перебрать 2016 номеров.
Функция y = x + 4/3 является линейной, т.к. здесь х в первой степени. Эта функция в общем виде может быть представлена как y = ax + b, где a и b - любые числа ( в нашем случае a = 1, а b = 4/3).
Функция y = x (x + 2) / x может быть преобразована в линейную только при условии, что x не равен 0 (при этом условии можно правую часть выражения сократить на х и получить y = x + 2), но в т.к. функция задана общем виде, без этого ограничения, то она не является линейной. Две последние функции содержат х в отрицательной степени (степень х равна -1), они обе не являются линейными.