P(x)=ax²+bx+c P(3)=a·3²+b·3+c 0= 9a +3b+c P(1)=a·1+b·1+c 1= a + b +c P(-1)=a·(-1)²+b·(-1)+c 0= a - b + c
Решаем систему трех уравнений с тремя неизвестными: 0= 9a +3b+c 1= a + b +c ⇒ сложим второе и третье уравнение : 2a+2c=1 0= a - b + c ⇒ вычтем из второго третье: 2b=1
0= 9a +3b+c 2a+2c=1 ⇒выразим с через c=(1-2a)/2 и подставим в первое урав 2b=1 ⇒ b=1/2 подставим в первое уравнение.
Сумма бесконечно УБЫВАЮЩЕЙ геометрической прогресии определяется по формуле S=b1/(1-q) и подставляем S=(-6)/(1-1/6)=(-6)/(5/6)=-36/5