Возьмем за S весь объем задания, а за х и у - скорость первого и второго штукатура соответственно тогда первый может выполнить задание за S/x часов, а второй за S/y. S/x +5=S/y S/(x+y)=6 надо найти S/x и S/y
S/y-S/x=5 S=6x+6y S/x =6+6y/x S/y=6+6x/y 6+6y/x-6-6x/y=5 обозначим y/x=z 6z-6/z=5 6z²-6=5z 6z²-5z-6=0 D=5²+4*6*6=169 √D=13 z₁=(5-13)/12=-8/12=-2/3 отбрасываем, так как z не может быть отрицательным z₂=(5+13)/12=-18/12=3/2=1,5 S/x =6+6y/x=6+6z=6+6*1,5=6+9=15 S/y=6+6x/y=6+6/z=6+6/1,5=6+4=10 ответ: 15 и 10 часов
а) 14 - (2 + 3х - х²) = х² + 4х - 9
14-2-3x+x²=x²+4x-9
14-2-3x=4x-9
12-3x=4x-9
12-3x-4x+9=0
21-7x=0
21=7x
x=21:7
x=3
6а²-(9а²-5аb)+(3a²-2ab)
а=-0,15,b=6
Думаю, что будет легче, если мы приведем подобные:
6а²-9а²+5аb+3a²-2ab (перед знаком минус - знаки в скобке меняем на противоположные, а при плюсе оставляем все, как есть)
Теперь выделяем подобные, имеющие одинаковые переменные и их степени(так будет удобней):
6а²-9а²+5аb+3a²-2ab
__ ___ __
И вычисляем:
6а²-9а²+3a²=0, поэтому мы не пишем числа, связанные с переменной а²
5аb-2аb=3аb
3аb
а и b числа:
-3 *0.15*6= -18*0.15=-2.7
ответ: -2.7
Объяснение: