Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
№2
у=х-(-3)
3х-3у=-9
3х-3(х+3)=-9
3х-3х=-9+9
0=0 следовательно прямые совпадают и имеют бесконечное множество решений
№3
х-у=3
2х-у=7
-2х+2у=-6
2х-у=7
-2х+2у+2х-у=-6+7
у=1
х=3+у
х=4
следующий пример
х-2у=1
2х+4у=18
-2х+4у=-2
2х+4у=18
-2х+4у=2х+4у=-2+18
8у=16
у=2
х=2у+1
х=5
№4
1 этап. Составление матем. модели
х - количество 5-ти рублёвых монет
у - клоичество 1-но рублёвых монет
составим систему
х+у=200
5х+у=800
2 этап. Работа с составленной мат. моделью
х+у=200
5х+у=800
будем решать методом подстановки
у=200-х
5х+у=800
5х+200-х=800
4х=600
х=150
у=200-150=50
3 этап ответ на поставленный вопрос
ответ: 150 пятирублёвых монет и 50 рублёвых монет