2*4^x-3*10^x=5*25^x
Разделим правую и левую части на 25^x.
4^x 10^x
2 - 3 = 5
25^x 25^x
Так как степени у числетелей и знаменателей одинаковые можно поступить следующим образом
2* (4 : 25)^х - 3*(10 : 25)^х = 5
Во второй дроби можно сократить 10 и 25 на 5. Получаем
2* (4 : 25)^х - 3*(2 : 5)^х = 5
Так как 4 = 2^2, a 25 = 5^2, получим следующее
2* (2 : 5)^2х - 3*(2 : 5)^х = 5
Введем новую переменную t = (2 : 5)^х
Получим новое уравнение
2*t^2 - 3*t = 5
2*t^2 - 3*t - 5 = 0
Решаем через дискриминант. a = 2, b = -3, c = -5
D = b^2 -4ac = 9 - 4*2*(-5) = 9 + 40 = 49
t(1) = (3 - 7) : 4 = -1
t(2) = (3 + 7) : 4 = 2,5
x = -1 нам не подходит, так как ни при каких х (2 : 5)^х не будет отрицательным.
Тогда получаем
(2 : 5)^х = t(2)
(2 : 5)^х = 5 : 2
(2 : 5)^х = (2 : 5)^(-1)
х = -1
ответ: х = -1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
Как видим, последняя цифра меняется так: 2, 4, 8, 6.
А далее эта последовательность повторяется. То есть имеем повторяющуюся последовательность из четырёх цифр.
Чтобы понять, на какую из этих цифр заканчивается 2^2015, мы разделим 2015 на 4. Получим 503 и остаток 3.
Чтобы далее было понятно, рассмотрим варианты:
1) если бы разделилось нацело (как, например, четвёртая степень), то число бы оканчивалось на шесть (смотри выше посчитанные степени)
2) если был бы остаток 1 (как, например, для пятой степени), то число бы оканчивалось на 2
3) если был бы остаток 2 (как, например, для шестой степени), то число бы оканчивалось на 4
4) а если остаток 3 (как, например, для седьмой степени), то число будет оканчиваться на 8
Соответственно, последняя цифра числа 2^2015 будет восемь.