Теория вероятности, причем задача из простых.
Рассмотрим все карточки, у нас есть 3 буквы "А", 1 буква "Т" и одна буква "К"
Пусть мы тянем в первый раз карточку, нам нужна буква "А", а таких 3, следовательно вероятность 60% или 0.6.
Потом нам нужна буква "Т", но она одна и осталось 4 карточки => вероятность 1/4 или 0.25
Потом нам нужна снова буква "А", но их 2 осталось и 3 карточки => вероятность 2/3
Потом нам нужна буква "К", но она одна и осталось 2 карточки => вероятность 1/2 или 0.5
Осталась одна карточка и одна буква => вероятность 100% или 1
Потом все значения перемножаем
0.6* 0.25 * 2/3 * 0.5 * 1= 0.05
х ∈ (-0,5; +∞)
Объяснение:
|2x+5|-1<6x-2
1) 2x+5 ≥ 0 (2x ≥ 5 или х ≥ 2,5 ) ⇒ |2x+5| = 2x+5
|2x+5|-1<6x-2 ⇒ 2x+5 -1<6x-2
2х + 4 < 6x - 2
4 + 2 < 6x - 2x
6 < 4x
6/4 < x
1,5 < x или х > 1,5 (ОДЗ: х≥ 2,5) ⇒ решение данной части: х ∈ [2,5; +∞)
2) 2x+5 < 0 (2x < 5 или х < 2,5 ) ⇒ |2x+5| = -(2x+5)
|2x+5|-1<6x-2 ⇒ -(2x+5) -1<6x-2
-2x-5 -1<6x-2
-2х -6 < 6x - 2
-6 + 2 < 6x + 2x
-4 < 8x
-4/8 < x
-0,5 < x или х > -0,5 (ОДЗ: х < 2,5) ⇒ решение данной части: x ∈ (-0,5;2,5)
объединяя решение первой части (х ∈ [2,5; +∞)) и второй (x ∈ (-0,5;2,5)) получаем общее решение х ∈ (-0,5; +∞)
Объяснение:
Да предлежит
Возьмёт точку А и точку б они лежат на прямой значи x отсюда следует что х это коэффициент