Первое задание смотрите в комментарии. Не хочу нагромождать решение.
Необходимо найти следующую сумму:
S= 1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+(n-1)^2/(2(n-1) -1)(2(n-1) + 1) + n^2/(2n-1)(2n+1)
Преобразуем выражение:
k^2/(2k-1)(2k+1) = 1/8 * ( 2k/(2k-1) + 2k/(2k+1) ) = 1/8 * ( 1 + 1/(2k-1) + 1 - 1/(2k+1) ) = 1/4 + 1/8( 1/(2k-1) - 1/(2k+1) )
Как видим, данную сумму можно представить так:
S = n/4 + 1/8 * (1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +...+ 1/(2n-3) - 1/(2n-1) + 1/(2n-1) --1/(2n+1) )
Как видим, все в скобках уничтожится, помимо: 1 - 1/(2n+1)
Откуда сумма ряда:
S = n/4 + 1/8 * ( 1 - 1/(2n+1) ) = n/4 + 1/8 * (2n/(2n+1) ) = n/4 * ( 1 + 1/(2n+1) ) =
= n/4 * ( (2n+2)/(2n+1) = n(n+1)/( 2(2n+1) )
1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+(n-1)^2/(2(n-1) -1)(2(n-1) + 1) + n^2/(2n-1)(2n+1) =
= n(n+1)/( 2(2n+1) )
Докажем теперь это методом математической индукции:
Проверим тождество для n = 1
1^2/1*3 = 1*2/( 2* 3)
1/3 = 1/3 - верно.
Предположим, что тождество справедливо при n = t:
1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+ t^2/(2t-1)(2t+1) = t(t+1)/( 2(2t+1) )
Докажем его справедливость для n = t + 1, то есть необходимо доказать, что:
1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+ t^2/(2t-1)(2t+1) + (t+1)^2/(2(t+1) -1)(2(t+1) +1) = (t+1)(t+2)/( 2(2(t+1)+1) ) = (t+1)(t+2)/(2*(2t+3) )
Доказываем:
1^2/1*3 + 2^2/3*5 + 2^3/5*7+...+ t^2/(2t-1)(2t+1) + (t+1)^2/(2(t+1) -1)(2(t+1) +1) =
= t(t+1)/( 2(2t+1) ) + (t+1)^2/(2(t+1) -1)(2(t+1) +1) =
= t(t+1)/( 2(2t+1) ) + (t+1)^2/(2t+1)(2t+3) = 1/2 * (t+1)/(2t+1) * ( t+ (2t+2)/(2t+3) ) =
=1/2 * (t+1)/(2t+1) * ( t + 1 - 1/(2t+3) ) = 1/2 * (t+1)/(2t+1) * ( 2t^2+3t +2t + 3 -1)/(2t+3) = (t+1)(2t^2+5t+2)/(2*(2t+1)(2t+3) ) = (t+1)(t+2)(2t+1)/(2*(2t+1)(2t+3) ) =
= (t+1)(t+2)/(2*(2t+3) ) - верно.
Таким образом, из принципа математической индукции данное тождество доказано.
1. х²=169
х₁ = -13, х₂=13
х²=7
х₁= -√7, х₂=√7
х²= -10
х∈∅(икс принадлежит пустому множеству, корней нет)
5х²+3х=0
х(5х+3)=0
х₁=0; 5х+3=0
5х= -3
х₂= -0,6
-6х²+7=1
-6х²= 1-7
-6х²= -6 | :(-6) разделим на -6
х²=1
х₁= -1, х₂= 1
-4х²-8=0
-4х²=8 | :(-4) разделим на -4
х²= -2
х∈∅(икс принадлежит пустому множеству, корней нет)
2. х²-12х+36=0
используя формулу квадрата разности, получаем:
(х-6)²=0
х-6=0
х=6
х²+7х+6=0
D= 49-4×6=49-24=25
x₁= -7+5/2= -2/2= -1
x₂= -7-5/2= -12/2= -6
значит, x₁= -1, x₂= -6
-8х²+6х-10=0 | :(-2) разделим на -2
4х²-3х+5=0
D= 9-4×5=9-20= -11
если D<0, => корней нет
х∈∅(икс принадлежит пустому множеству)
3. -5х²+19х-14=0 |×(-1) домножим на (-1)
5х²-19х+14=0
D= 361-4×5×14=361-280=81
х₁=19+9/2×5=28/10=2,8
х₂=19-9/2×5=10/10=1
значит, x₁=2,8; x₂=1
сумма корней: 2,8+1=3,8
произведение корней: 2,8×1=2,8
4. х²+6х+5= (х+5)(х+1)
8х²+40х+50= 2(2х+5)²
-4х²-4х+8= -4(х+2)(х-1)
5. (-7х+4)(-7х-5)+5х= -20
49х²+35х-28х-20+5х= -20
49х²+12х=0
х(49х+12)=0
х₁=0; 49х+12=0
49х= -12
х₂= -12/49
(-8х+2)(-8х-2)+9х= -4
используя формулу разности квадратов:
64х²-4+9х= -4
64х²+9х=0
х(64х+9)=0
х₁=0; 64х+9=0
64х= -9
х₂= -9/64
6. (-х+4)/(-х-8)=(х+5)/(-х-10)
это пропорция, используем метод "крест-накрест":
(-х+4)(-х-10)=(х+5)(-х-8)
(-х+4)(-х-10)-(х+5)(-х-8)=0
х²+10х-4х-40-(-х²-8х-5х-40)=0
х²+6х-40+х²+13х+40=0
2х²+19х=0
х(2х+19)=0
х₁=0; 2х+19=0
2х= -19
х₂= -19/2
х₂= -9,5
7. -
8. пусть первое число - х, второе число - у
по условию сумма равно 50, => х+у=50
произведение 400, => ху=400
составим систему:
1. х+у=50, 2. х=50-у (подставим вместо х)
ху=400; (50-у)у=400, решаем:
50у-у²=400
у²-50у+400=0
D=2500-4×400=2500-1600=900
y₁=50+30/2=80/2=40
y₂=50-30/2=20/2=10
подставим в первое уравнение второй системы:
х₁=50-у₁=50-40=10
х₂=50-у₂=50-10=40
ответ: это числа 40 и 10
9. -