Для начала приведем выражение к виду квадратного уравнения, так как видим формулу сокращенного умножения квадрата разности: Приравняем к нулю для решения квадратного уравнения и избавимся от цифры 5 для простоты вычислений: Но вычислять корни, являющиеся точками пересечения с осью X нам не нужно, так как цель - вершина параболы. Она вычисляется по формуле: Мы получили значение координаты точки вершины параболы но только по оси Х. Для оси Y просто подставим полученное значение в исходную функцию: То есть точка 0 по оси Y. Итого координата вершины параболы: 3;0
Для начала приведем выражение к виду квадратного уравнения, так как видим формулу сокращенного умножения квадрата разности: Приравняем к нулю для решения квадратного уравнения и избавимся от цифры 5 для простоты вычислений: Но вычислять корни, являющиеся точками пересечения с осью X нам не нужно, так как цель - вершина параболы. Она вычисляется по формуле: Мы получили значение координаты точки вершины параболы но только по оси Х. Для оси Y просто подставим полученное значение в исходную функцию: То есть точка 0 по оси Y. Итого координата вершины параболы: 3;0
a-b=14
a^2+b^2=26^2
a^2+b^2-2ab=14^2
2ab=(26+14)(26-14)
ab=240
a-b=14
применив теорему Виетта имеем a=24 b=10