пусть первое число - n, тогда второе n+1(так как по условию, у нас последовательные натуральные числа). Ну и опираясь на условие составим уравнение:
n(n+1) = 1.25n²
n² + n - 1.25n² = 0
-0.25n² + n = 0
n(-0.25n + 1) = 0
n = 0 или -0.25n + 1 = 0
-0.25n = -1
n = 4
Рассуждаем дальше. Первый корень сразу отбрасываю, так как 0 не является натуральным числом. таким образом, меньшее из чисел равно 4. Тогда второе число равно 4+1 = 5. Речь шла о числах 4 и 5.
Преобразуемой первое и последнее слагаемое по формуле суммы синусов
2sin[(4x + 2x)/2]cos[4x - 2x]/2] + sin3x = 0
2sin3xcosx+ sin3x = 0
sin3x(2cosx + 1) = 0
sin3x = 0
3x = πn, n ∈ Z
x = πn/3, n ∈ Z
2cosx + 1 = 0
cosx = -1/2
x = ±2π/3 + 2πk, k ∈ Z
ответ: x = πn/3, n ∈ Z; ±2π/3 + 2πk, k ∈ Z.
2) 2sin²x + 3sinxcosx + cos²x = 0 |:cos²x
2tg²x + 3tgx + 1 = 0
2tg²x + 2tgx + tgx + 1 = 0
2tgx(tgx + 1) + (tgx + 1) = 0
(2tgx + 1)(tgx + 1) = 0
2tgx + 1 = 0
tgx = -1/2
x = arctg(-1/2) + πn, n ∈ Z.
tgx + 1 = 0
tgx = -1
x = -π/4 + πk, k ∈ Z.
ответ: arctg(-1/2) + πn, n ∈ Z; -π/4 + πk, k ∈ Z.