ргроготщлшь болды долларға шб
Подкоренное выражение 7х - х² должно быть положительным или равным нулю, потому что извлекать квадратный корень из отрицательного числа нельзя.
7х - х² ≥ 0.
Решим неравенство методом интервалов. Найдем нули функции.
7х - х² = 0.
Вынесем за скобку общий множитель х.
х(7 - х) = 0.
Произведение двух множителей равно нулю тогда, когда один из множителей равен нулю.
1) х = 0;
2) 7 - х = 0;
х = 7.
Отметим на числовой прямой точки 0 и 7.
Эти числа делят числовую прямую на интервалы 1) (-∞; 0], 2) [0; 7], 3) [7; +∞).
Выясним, на каком из интервалов выражение 7х - х² будет принимать положительные значения. На 1 и 3 интервалах это выражение отрицательно, на 2 итервале - положительно. Поэтому, значения х, принадлежащие 2 интервалу являются областью определения функции.
ответ. [0; 7].
Решение: Используем геометрическое определение вероятности события AA = (Встреча с другом состоится).
Обозначим за хх и уу время прихода, 0≤х,у≤600≤х,у≤60 (минут). В прямоугольной системе координат этому условию удовлетворяют точки, лежащие внутри квадрата ОАВСОАВС. Друзья встретятся, если между моментами их прихода пройдет не более 13 минут, то есть
y−x<13,y>x,y−x<13,y>x,
x−y<13,x>y.x−y<13,x>y.
Этим неравенствам удовлетворяют точки, лежащие в области GG, очерченной красным.
Тогда вероятность встречи равна отношению площадей области GG и квадрата, то есть
P(A)=SGSOABC=60⋅60−55⋅5560⋅60=23144=0,16.P(A)=SGSOABC=60⋅60−55⋅5560⋅60=23144=0,16.
ответ: 0,16
Объяснение:
отметь как лучший
а где фото у меня тут нет