Сначала определим вероятность того, что среди выбранных четырех карт не окажется валетов. В колоде 32 карты не валеты. Вероятность того, что первая карта не валет равна 32/36 = 8/9. После этого останется 35 карт и 31 из них не валеты. Вероятность того, что вторая карта не валет, 31/35. Аналогично рассуждая получаем. что вероятность того, что третья карта не валет, равна 30/34 = 15/17, а для четвертой карты 29/33. Вероятность того, что среди четырех карт нет валетов, равна 8/9 * 31/35 * 15/17 * 29/33 = 7192/11781. Вероятность того, что среди четырех карт окажется хотя бы 1 валет, равна 1 - 7192/11781 = 4589/11781. Округлив дробь до десятых, получим 0.4. ответ: Вероятность того, что среди четырех карт окажется хотя бы 1 валет, равна 0.4
Дабы упростить задачу, сделаем так, чтобы график квадратичной функции касался прямой y = 3 в своей вершине. Вершина параболы y = x² - это точка O(0; 0). При параллельном переносе на 6 ед. влево и 3 ед. вверх вершиной параболы будет точка O1(6; 3). Чтобы из графика функции y = x² получить график функции y = (x - 6)² + 3, нужно y = x² перетащить на 6 ед. влево и на 3 ед. вверх, что мы и сделаем. В конечном итоге получим график квадратичной функции, которая касается в своей вершине прямой y = 3 в точке с абсциссой 6.
В колоде 32 карты не валеты.
Вероятность того, что первая карта не валет равна 32/36 = 8/9.
После этого останется 35 карт и 31 из них не валеты.
Вероятность того, что вторая карта не валет, 31/35.
Аналогично рассуждая получаем. что вероятность того, что третья карта не валет, равна 30/34 = 15/17, а для четвертой карты 29/33.
Вероятность того, что среди четырех карт нет валетов, равна 8/9 * 31/35 * 15/17 * 29/33 = 7192/11781.
Вероятность того, что среди четырех карт окажется хотя бы 1 валет, равна 1 - 7192/11781 = 4589/11781. Округлив дробь до десятых, получим 0.4.
ответ: Вероятность того, что среди четырех карт окажется хотя бы 1 валет, равна 0.4