1) Коэффициент одночлена - это дробь перед переменными, в данном случае 3/4, а степень одночлена - это сумма степеней переменных, в данном примере 5+1, значит, 6.
Определить коэффициент и степень одночлена:
3/4 х⁵у = 3/4 и 6. ответ С.
2) Сложить длины всех сторон:
2ху²+6х-у+4ху²+5ху²+3х=
=11ху²+9х-у (запись в стандартном виде, по мере убывания степеней).
Степень многочлена - наибольшая из степеней одночлена в его составе. Здесь ху²=1+2=3, это степень многочлена.
Обозначим объем бассейна S, скорость наполнения первой трубой х, а второй - у. Две трубы вместе за 1 час наполнят 3/4 бассейна. Запишем это в виде уравнения (3/4)S/(x+y) =1 S/(x+y)=4/3 (x+y)/S=3/4 x/S + y/S =3/4
Если сначала первая труба наполнит 1/4 бассейна , а затем вторая при выключенной первой доведет объем до 3/4 , то на это понадобится 2,5 часа То есть первая труба наполняет 1/4 бассейна, а вторая 1/2 (1/4)S/x + (1/2)S/y=2,5
Если первую трубу включить на час . а вторую на полчаса, то они наполнят бассейн больше чем на 1/2. x+y/2>S/2
Найти S/x и S/y обозначим a=S/x и b=S/y, тогда наши уравнения упростятся 1/a + 1/b=3/4 (1/4)a + (1/2)b=2,5 1/a+1/2b>1/2 найти a и b
из первого (a+b)/ab=3/4 4(a+b)=3ab из второго уравнения a+2b=10 a=10-2b подставляем a в первое уравнение 4(10-2b+b)=3b(10-2b) 4(10-b)=3b(10-2b) 40-4b=30b-6b² 6b²-34b+40=0 D=34²-4*6*40=196 √D=14 b₁=(34-14)/12=20/12=5/3 a₁=10-2*5/3=10-10/3=(30-10)/3=20/3 b₂=(34-14)/12=48/12=4 a₂=10-2*4=2 получили 2 ответа, подстваляем в неравенство 1/a+1/2b>1/2 1/a₁+1/2b₁=3/20+(1/2)(3/5)=3/20+3/10=9/20<1/2 -не подходит 1/a₂+1/2b₂=1/2 + (1/2)(1/4)=1/2+1/8>1/2 -подходит ответ: первая труба наполняет бассейн за 2 часа, а вторая за 4 часа.
Рисунок к заданию - во вложении 1. Проведем прямую через точки В и С. 2. Точку А соединим с точкой С.. 3.Вокруг отрезка [AC] нарисуем прямоугольник 1 × 2, в котором [AC] является диагональю и делит данный прямоугольник на 2 равных прямоугольныз треугольника. 4. Имеем прямоугольный треугольник с катетами длины 1 и 2 и гипотенузой [AC]. 5. По формуле Пифагора вычисляем длину гипотенузы: 1²+2²=[AC]² => [AC]²=5 => [AC]=√5 ответ:Расстояние от точки А до прямой ВС равно √5≈2.2 клетки
В решении.
Объяснение:
1) Коэффициент одночлена - это дробь перед переменными, в данном случае 3/4, а степень одночлена - это сумма степеней переменных, в данном примере 5+1, значит, 6.
Определить коэффициент и степень одночлена:
3/4 х⁵у = 3/4 и 6. ответ С.
2) Сложить длины всех сторон:
2ху²+6х-у+4ху²+5ху²+3х=
=11ху²+9х-у (запись в стандартном виде, по мере убывания степеней).
Степень многочлена - наибольшая из степеней одночлена в его составе. Здесь ху²=1+2=3, это степень многочлена.
3) аz²-bz²-bz+az-a+b=
=(аz²-bz²)-(bz-az)-(a-b)=
=z²(a-b)-(-z(a-b)-(a-b)=
=z²(a-b)+z(a-b)-(a-b)=
=(a-b)*(z²+z-1).