М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
леньчайник
леньчайник
17.07.2021 23:27 •  Алгебра

Довести тотожність x2-6x+9 x2-3x+9*x3+27 3x-9=x2-9 3​

👇
Открыть все ответы
Ответ:
DaniilFPS
DaniilFPS
17.07.2021
Прежде всего раз график f(х) касается прямой у=2х-16, то это означает, что у=2х-16 является касательной к f(x).

График функции f(x)=x²+px+q проходит через начало координат

отсюда получаем f(0)=0
или 0=0²+р*0+q
откуда q=0
значит график функции
f(x) имеет вид f(x)=x²+px

Найдем производную f(x)=x²+px
f'(x)=2x+p

Наименьшее значение f(x) будет достигаться в точке Хмин
при f'(Xмин)=0
2Хмин+р=0 откуда Хмин= - р/2 (#)
Нам остаётся найти p

Уравнение касательной к f(x) в точке Хо
у=f(Xo)+f'(Xo)(x-Xo)

f(X0)=Xo²+pXo
f'(Xo)=2Xo+p

значит
у= (Xo²+pXo)+
+(2Xo+p)(х-Хо)=
=(2Xo+p)х+
+(Xo+pXo-2Хо²-pXo)=
=(2Xo+p)х +(-Xo²)
Наша касательная по условию:
y=2х-16

откуда, приравнивая коэффициенты при x и свободные члены, получим :
2Хо+р=2 (1)
-Xo²=-16 и(2)

из (2) получаем Xo²=16 и (Хо)1,2=±4
из (1) находим p=2-2Xo
p1=2-2*4=-6
f1(x)=x²-6x (синий график , см фото)
p2=2+2*4=10
f2(x)=x²+10x (черный график, см фото)
касательная у=2х-16 обозначена красным цветом

из (#)
Хмин= - р/2
подставляем найденные значения p в эту формулу:
(Xmin)1= -(-6)/2=3
(Xmin)2= -10/2=-5

Наименьшие значения функций:
f((Xmin)1)= 3²-6*3=-9
f((Xmin)2)=(-5)²+10(-5)=-25
(два решения)
30 , тема: уравнение касательной к графику объяснить досконально, непонятна тема график функции f(x)
4,8(88 оценок)
Ответ:
ifj2ifvjw
ifj2ifvjw
17.07.2021

-14

Объяснение:

Условие задачи написано не корректно, то что вы написали можно по разному прочитать, но я всё же думаю, что вы имели в виду это:

(\sqrt{15} - 1) * (\frac{\sqrt{5} }{\sqrt{3} - \sqrt{5}} - \frac{\sqrt{3}}{\sqrt{5} + \sqrt{3}}) .

С первой скобкой ничего не поделаешь, но во второй скобке можно привести всё к общему знаменателю (\sqrt{3} - \sqrt{5})(\sqrt{5} + \sqrt{3}).

(\sqrt{15} - 1) * (\frac{\sqrt{5} }{\sqrt{3} - \sqrt{5}} - \frac{\sqrt{3}}{\sqrt{5} + \sqrt{3}})  = (\sqrt{15} - 1) * (\frac{\sqrt{5}*(\sqrt{3} + \sqrt{5}) - \sqrt{3}*(\sqrt{3} - \sqrt{5})}{(\sqrt{3} - \sqrt{5})(\sqrt{5} + \sqrt{3})}).

Далее во второй скобке раскрываем скобки в числители и знаменателе.

(\sqrt{15} - 1) * (\frac{\sqrt{5}*(\sqrt{3} + \sqrt{5}) - \sqrt{3}*(\sqrt{3} - \sqrt{5})}{(\sqrt{3} - \sqrt{5})(\sqrt{5} + \sqrt{3})}) = (\sqrt{15} - 1) * (\frac{\sqrt{15} + 5 - 3 + \sqrt{15})}{3 - \sqrt{15} - 5 - \sqrt{15}}).

Во второй скобке после элементарных арифметических операций получаем:

(\sqrt{15} - 1) * (\frac{\sqrt{15} + 5 - 3 + \sqrt{15})}{3 - \sqrt{15} - 5 - \sqrt{15}}) = (\sqrt{15} - 1) * (\frac{2* \sqrt{15} + 2}{-2}).

Во второй скобке сократим числитель и знаменатель на 2, получаем:

(\sqrt{15} - 1) * (\frac{2* \sqrt{15} + 2}{-2}) = (\sqrt{15} - 1) * (\frac{ \sqrt{15} + 1}{-1}) = (\sqrt{15} - 1) * (-(\sqrt{15} + 1)) =

= -(\sqrt{15} - 1)(\sqrt{15} + 1) = -(15 + \sqrt{15} - \sqrt{15} - 1) = -14.

4,6(27 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ