При симметрии относительно плоскости ОХУ координаты х и у точки не изменятся, а координата z поменяет знак на противоположный, так как симметричная точка будет находиться на таком же расстоянии от плоскости ОХУ, но с другой стороны.
Тогда центр сферы, точка с координатами (4; –2; 1) перейдёт в точку с координатами (4; –2; –1).
Уравнение сферы: (х – а)² + (у – b)² + (z – c)² = R²
(a; b; c) – координаты центра сферы, R – радиус сферы.
Тогда уравнение сферы с центром в точке с координатами (4; –2; –1) и радиусом 3 см примет вид:
(х – 4)² + (у + 2)² + (z + 1)² = 3²
(х – 4)² + (у + 2)² + (z + 1)² = 9
Найдём объём шара:
V = 4/3∙πR³
V = 4/3∙π·3³ = 4∙π·9 = 36πответ: БИЛЕТ№1
1. отрезок -прямая, которая имеет начало и конец, обозначается с обоих сторон точками.
луч - это прямая линия, которая имеет начало, но не имеет конца.
угол - это геометрическая фигура, образованная 2-мя лучами
развернутый угол-это угол, стороны которого составляют прямую
2. если две стороны и угол между ними одного треугольника соответственно равны двум сторонам между ними другого треугольника, то такие треугольники равны
3. т.к. треугольник прямоугольный, а один из углов 30гр, то второй катет будет равен половине гипотенузы 12*2=24см
4.т.к треуг.АВС равноб. следовательно углы при основании равны, а т.к. угол 1 вертикальный углу ВАС, значит они равны
2 вертик угол ВС, а следовательно они равны
угол1 = углу ВАС, угол 2 - углу ВСА
следовательно углы =
Угол А+уголД=180-36=144, угол АНВ=180-68=112, он также равен полусумме двух дуг АВ и ДС, то есть (дугаАВ+дуга ДС)/2=112. Сумма углов А и Д равна полусумме дуг на которые они опираются то есть (дуга ВС+дуга ДС)/2+(дуга АВ+ дугаВС)/2=144. Подставляем ранее полученное значение (дуга АВ+дуга ДС)/2=112., получим 112+2ВС/2=144. Отсюда ВС=32, вписанный угол ВАС опирается на эту дугу и равен её половине то есть угол ВАС=32/2=16.