М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
SonyEricsson
SonyEricsson
14.04.2023 04:07 •  Алгебра

Сумма квадратов крайних чисел четырехзначного числа равна 65, а разность квадратов второй и третьй цифр этого числа равна 27. сумма этого числа и числа 2727 равна числу, записанному циф- рами исходного числа, но в обратном порядке. найдите число.

👇
Ответ:
AnastasiaBA
AnastasiaBA
14.04.2023

x - искомое четырехзначное число
x = 1000a+100b+10c+d, а - число тысяч, b - число сотен, с - число десятков, d - число единиц (0<a<10; 0<b<10; 0<c<10; 0<d<10)

a и d - крайние числа => a^2+d^2=65
b и с - вторая и третья цифры => b^2-c^2=27

Решим первое уравнение, учитывая, что a и d - натуральные числа: (1;8);(8;1);(4;7);(7;4)

Второе уравнение можно расписать так: (b-c)(b+c)=3^3. Это уравнение можно расписать как совокупность из четырех систем уравнений (учитывая, что (b-с) и (b+с) - натуральные числа, так как b и с - натуральные): 1) b-c=1 и b+c=3^3=27; 2) b-c=3 и b+c=3^2=9; 3)b-c=3^2=9 и b+c=3; 4)b-c=3^3=27 b b+c=1. Решая первую систему, получаем (14;13) - это не удовлетворяет условию 0<b<10 и 0<c<10. Решая вторую систему, получаем (6:3) - удовлетворяет нужным условиям. Решая третью систему, получаем (6;-3) - не удовлетворяет условию 0<c<10. Решая последнюю систему, получаем (14;-13) - не удовлетворяет условиям  0<b<10 и 0<c<10. Значит искомые числа b и с равны 6 и 3 соответственно.

Соединяя числа 6 и 3 и числа, полученные при решении уравнения a^2+d^2=65, получаем варианты искомого четырехзначного числа: 1638, 8631, 4637, 7634. Прибавляя к каждому числу 2727, убеждаемся, что искомое число - 4637 (так как 4637+2727=7364, то есть записанное искомое число в обратном порядке)

ответ: 4637 

4,4(87 оценок)
Открыть все ответы
Ответ:
blinovaa
blinovaa
14.04.2023

в) Предположим, нам удалось вычеркнуть n сумм.

С одной стороны, сумма всех вычеркнутых чисел не меньше 1 + 2 + 3 + ... + 3n = 3n (3n + 1)/2; с другой стороны, сумма вычеркнутых чисел не больше 39 + 38 + 37 + ... + (40 - n) = n (79 - n) / 2. Поэтому n (79 - n) / 2 ≥ 3n (3n + 1)/2; 79 - n ≥ 9n + 3; n ≤ 7.

Покажем, что n = 7 возможно:

1 + 15 + 23 = 39

2 + 14 + 22 = 38

3 + 13 + 21 = 37

4 + 12 + 20 = 36

5 + 11 + 19 = 35

6 + 10 + 18 = 34

7 + 9 + 17 = 33


а) Например, первые 6 примеров выше

б) Нет, по доказанному


ответ. б) нет; в) 7

4,7(6 оценок)
Ответ:
pistolenter
pistolenter
14.04.2023
Раскроем выражение под знаком модуля, тогда для случая sin>=0 имеем sinx-cosx=cos(90-x)-cos(x)=-2*sin(0,5*(90-2*x))*cos(45)=-2*cos(45)*sin(0,5*(90-2*x)). Так как cos45 - это число, то имеем число, умноженное на sin(0,5*(90-2*x)), то есть периодическую функцию  с периодом 360 градусов. Теперь для sin[<0 имеем -sinx-cosx=-cos(90-x)-cos(x)=-cos(90-x)-cos(x)=-(cos(90-x)+cos(x))=-(2*cos(45)*cos(0,5*(90-2*x))), также периодическая функция с периодом 360 градусов. Таким образом, итоговая функция также периодическая с периодом 360 градусов или 2*π.
4,4(4 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ