1) 64m^3 -1 = (4m)^3 - 1^3 = (4m - 1)*(16m^2 + 4m + 1)
2) (x-3)*(x^2 +3x +9) - x(x^2 -16) = 21
x^3 - 3^3 - x^3 + 16x^2 = 21
16x^2 = 21 + 27
16x^2 = 48
x^2 = 3
x_1 = -V3, x_2 = V3
3) (a+3)^3 - (a-1)^3 - 12a^3 = a^3 + 3a^2*3 + 3a*9 + 27 - a^3 + 3a^2 * 1 - 3a*1 + 1 -
-12a^3 = -12a^3 + 12a^2 + 24a + 28 = -4(a^3 - 3a^2 - 6a - 7)
4) (x+2)^3 - x(3x+1)^2 + (2x+1)(4x^2 -2x+1) = 42
x^3 + 3x^2 *2 + 3x*2^2 + 2^3 - 9x^3 - 6x^2 - x + (2x)^3 + 1^3 -42 = 0
11x = 33
x = 3
5) (x^n + x^(n-1))^3 = x^3n + 3x^2n *x^(n-1) + 3x^n *(x^(n-1))^2 + (x^(n-1))^3 =
= x^3n + 3x^(3n-1) + 3x^(3n -2) + x^(3n-3) = x^3n(1 + 3x^(-1) + 3x^(-2) + x^(-3))
6) (a-1)^3 + 3(a-1)^2 + 3(a-1) + 1 + a^3 = a^3 - 3(a-1)^2 + 3(a-1) - 1 +3(a-1)^2 +
+3(a-1) + 1+ a^3 = 2a^3 + 6(a-1) + 1 = 2a^3 + 6a - 5
1) 64m^3 -1 = (4m)^3 - 1^3 = (4m - 1)*(16m^2 + 4m + 1)
2) (x-3)*(x^2 +3x +9) - x(x^2 -16) = 21
x^3 - 3^3 - x^3 + 16x^2 = 21
16x^2 = 21 + 27
16x^2 = 48
x^2 = 3
x_1 = -V3, x_2 = V3
3) (a+3)^3 - (a-1)^3 - 12a^3 = a^3 + 3a^2*3 + 3a*9 + 27 - a^3 + 3a^2 * 1 - 3a*1 + 1 -
-12a^3 = -12a^3 + 12a^2 + 24a + 28 = -4(a^3 - 3a^2 - 6a - 7)
4) (x+2)^3 - x(3x+1)^2 + (2x+1)(4x^2 -2x+1) = 42
x^3 + 3x^2 *2 + 3x*2^2 + 2^3 - 9x^3 - 6x^2 - x + (2x)^3 + 1^3 -42 = 0
11x = 33
x = 3
5) (x^n + x^(n-1))^3 = x^3n + 3x^2n *x^(n-1) + 3x^n *(x^(n-1))^2 + (x^(n-1))^3 =
= x^3n + 3x^(3n-1) + 3x^(3n -2) + x^(3n-3) = x^3n(1 + 3x^(-1) + 3x^(-2) + x^(-3))
6) (a-1)^3 + 3(a-1)^2 + 3(a-1) + 1 + a^3 = a^3 - 3(a-1)^2 + 3(a-1) - 1 +3(a-1)^2 +
+3(a-1) + 1+ a^3 = 2a^3 + 6(a-1) + 1 = 2a^3 + 6a - 5
а) 23, 25, 32, 35, 52, 53
3 варианта первой цифры, 2 второй
Всего 6 чисел (3*2)
Объяснение:
б) 741, 740, 714, 710, 704, 701, 471, 470, 417, 410, 407, 401, 174, 170, 147, 140, 107, 104
3 варианта первой цифры, тк число не может начинаться с нуля
3 варианта второй (не может быть первая цифра, но может быть ноль)
2 третьей
3*3*2=18