Обозначим наше число как abcdefg. Счастливое число - это такое число, для которого выполняется условие b+d+f = a+c+e+g (*). Рассмотрим каждое предположение, и запишем для него соответствующее уравнение:
а) a<b<c<d<e<f<g => b+d+f < c+e+g < а+c+e+g => условие (*) не может быть выполнено
б) a>b>c>d>e>f>g => b+d+f < а+c+e < а+c+e+g => условие (*) не может быть выполнено
в) 7b7d7f7 => Если число счастливое, то должно выполнятся условие b+d+f = 7+7+7+7 = 7*4 = 28, но b+d+f <= 3*9 =27 => условие (*) не может быть выполнено
г) abc1cba => Если число счастливое, то должно выполнятся условие b+1+b = a+c+c+a => 2b+1 = 2(a+c) => нечетное_число = четное_число => условие (*) не может быть выполнено
д) abc2cba => Если число счастливое, то должно выполнятся условие b+2+b = a+c+c+a => 2(b+1) = 2(a+c) => b+1 = a+c => b = a+c-1 => условие (*) может быть выполнено (возьмем, например, число 1332331 - это число "счастливое", т.к. 3+2+3 = 1+3+3+1).
Итак, из всех приведенных условий, для счастливого числа может выполнятся только условие д)
ответ: "счастливое" семизначное число может быть числом вида abc2cba, как указано в условии д)
Длину дистанции обозначим S м. Скорость Маши v(M) = S/35 м/мин Скорость Коли v(K) = S/28 м/мин Их скорости относятся друг к другу v(K):v(M) = 35:28 = 5:4 Если бы они начали одновременно, то Коля пробежал бы 5/9 пути, а Маша 4/9 пути, т.е. часть 0,8 от пути Коли. А на самом деле Маша пробежала 0,75 от пути Коли. Коля пробежал x м, а Маша на 1/4 меньше Коли, т.е. 0,75x м. А вместе они пробежали S = x + 0,75x = 1,75x = 7x/4 x = 4/7*S - путь Коли; 0,75x = 3/7*S - путь Маши. 3/7 = 27/63 < 4/9 = 28/63, значит Маша пробежала меньше, чем могла бы, если бы они начали одновременно. Значит, Коля начал раньше. Пусть Коля начал раньше на а мин. Значит, когда Маша начала, он уже пробежал а/35 часть пути. Осталось (35-a)/35 часть. Коля пробежал 5/9 от этой части. Это будет (35-a)/35*5/9 = 5(35-a)/315 - пробежал Коля от старта Маши до встречи. А всё вместе он пробежал 4/7 пути. a/35 + 5(35-a)/315 = 4/7 Умножаем всё на 315 = 35*9 = 45*7 9a + 175 - 5a = 4*45 = 180 4a = 5 a = 5/4 Ближе всего это к 1 мин. Видимо, правильный ответ: Г) Коля на 1 мин раньше.
Обозначим наше число как abcdefg. Счастливое число - это такое число, для которого выполняется условие b+d+f = a+c+e+g (*). Рассмотрим каждое предположение, и запишем для него соответствующее уравнение:
а) a<b<c<d<e<f<g => b+d+f < c+e+g < а+c+e+g => условие (*) не может быть выполнено
б) a>b>c>d>e>f>g => b+d+f < а+c+e < а+c+e+g => условие (*) не может быть выполнено
в) 7b7d7f7 => Если число счастливое, то должно выполнятся условие b+d+f = 7+7+7+7 = 7*4 = 28, но b+d+f <= 3*9 =27 => условие (*) не может быть выполнено
г) abc1cba => Если число счастливое, то должно выполнятся условие b+1+b = a+c+c+a => 2b+1 = 2(a+c) => нечетное_число = четное_число => условие (*) не может быть выполнено
д) abc2cba => Если число счастливое, то должно выполнятся условие b+2+b = a+c+c+a => 2(b+1) = 2(a+c) => b+1 = a+c => b = a+c-1 => условие (*) может быть выполнено (возьмем, например, число 1332331 - это число "счастливое", т.к. 3+2+3 = 1+3+3+1).
Итак, из всех приведенных условий, для счастливого числа может выполнятся только условие д)
ответ: "счастливое" семизначное число может быть числом вида abc2cba, как указано в условии д)