Объяснение:
составим систему уравнений
b(5)-b(3)=1200 (1)
b(5)-b(4)=1000 (2) ⇒ b(5)= 1000+b(4) (2_2)
Добавим в систему третье уравнение b(4)²=b(5)*b(3) (3)
вычтем из уравнения (1)-(2) ⇒ b(4)-b(3)=200 ⇒ b(3)=b(4)-200 (4)
Подставим (2_2) в (3)
b(4)²=(1000+b(4))*b(3) Подставим вместо b(3) уравнение (4)
b(4)²=(1000+b(4))*(b(4)-200)
b(4)²==1000b(4)+b(4)²-200000-200b(4) [b(4)² сократим]
800 b(4)=200000 b(4)=250
b(3)=250-200=50 b(3)=50
q=b(4)/b(3)=250/50=5 q=5
b(3)=b(1)*q² ⇒ b(1)=50/25=2 b(1)=2
S(5)= b(1)(q^n-1)/(q-1)
S(5)=3125
1.
а)x^3-2x = х(х²-2)
б)5a^2-10ab+5b^2 = 5(a^2-2ab+b^2) = 5(a-b)²
в)cm-cn+3m-3n = (cm-cn)+(3m-3n) = с(m-n)+3(m-n) = (с+3)(m-n)
2.
2(p+q)²-p(4q-p)+q² = 3p²+3q² при любых p и q
2(p+q)²-p(4q-p)+q² = 2(p²+2pq+q²) -4pq+p²+q² = 2p²+4pq+2q² -4pq+p²+q² = 3p²+3q²
таким образом, мы привели левую часть к правой, тем самым доказав, что значения выражений будут равны при любых p и q
3.
(x-3)(x+3) = x(x-2)
х²-9=х²-2х
2х=9
х=4,5
ответ: при х=4,5
4.
а)(a-3b)(a+3b)+(2b+a)(a-2b) = (a²-9b²) + (a²-4b²) = 2a²-13b²
б)(p+q)(q-p)(q²+p²) = (q²-p²)(q²+p²) = q⁴-p⁴
5.
x³-27-3x(x-3)=0
(x³-3³)-3x(x-3)=0
воспользуемся формулой разности кубов:
(х-3)(х²+3х+9)-3x(x-3)=0
(х-3)(х²+3х+9-3х)=0
х-3=0 или (х²+3х+9-3х)=0
х=3 х²+9=0
х²=-9 - решений нет
ответ: х=3