Пойдем от противного, предположим что существует такая дробь которая после определенного количества секунд при которых будут выполняться сказанные выше условия будет сокращаться на 11.
1. через н секунд дробь примет вид (н+1)/(3+7*н) . притом и (н+1) и (3+7*н) делятся на 11.
2. так как оба числа кратны 11, то и их разность будет кратна 11, что легко видеть так как числа отличаются на число кратное 11. Также нам не мешает домножить (н+1) на любое натурально число и вычесть из него знаменатель, при этом результат тоже будет кратен 11. Почему так: потому что домножив (н+1) на что-либо оно все равно будет делиться на 11, так как делилось на него изначально, а разность как уже было расмотренно выше тоже будет числом кратным 11.
3. опираясь на доказанное в пункте 2 умножим (н+1) на 7 и вычтем из того что получится знаменатель, т. е (3+7*н) .
7*(н+1)-(3+7*н) =7*н+7-3-7*н=7-3=4
но так же в пункте 2 было рассмотрено что результат этого должен делиться на 11, но 4 на 11 не делиться. Мы пришли к противоречию, значит конца света бояться не надо)
Пусть концентрация первого раствора х%, а второго у%. В первом растворе содержится 12х/100 кг кислоты, а во втором 8у/100 кг. Если их слить, то в полученном растворе окажется 12х/100+8у/100 кг. С другой строны мы получим 12+8=20 кг 65% раствора. В нем 20*65/100=13 кг кислоты. Получаем уравнение 12х/100+8у/100 =13 12х+8у=1300 Теперь будем сливать одинаковые массы растворов, например по 1 кг. В первом растворе окажется х/100 кг кислоты, во втором у/100 кг. В итоговом растворе будет 2*60/100=1,2кг Получаем уравнение х/100+у/100=1,2 х+у=120 Итак мы получили систему уравнений 12х+8у=1300 х+у=120 Решаем х=120-у 12(120-у)+8у=1300 1440-12у+8у=1300 12у-8у=1440-1300 4у=140 у=35% Во втором растворе содежится 8*35/100=2,8 кг кислоты
134ответ пооому что э
я прочерила