а=18
Объяснение:
Чтобы найти коэффициент а гиперболы y = a/x, проходящей через точку (3; 6) (где 3 - координата х, 6 - координата у), нужно координаты этой точки подставить в формулу данной гиперболы и решить полученное уравнение:
6 = а / 3.
В этом уравнении а является неизвестным делимым. Чтобы его найти нужно делитель 3 умножить на частное 6:
а = 3 * 6 = 18.
Таким образом формула искомой гиперболы имеет вид: у = 18/х. Так как полученное а - положительное число, то ветви гиперболы располагаются в 1 и 3 четвертях координатной плоскости.
ответ: а = 18.
а) - 2 ответа
б) - нет ответов
в) - 2 ответа
г) - 2 ответа
Объяснение:
а) х⁴ - 81 = 0
Перенос :
х⁴ = 81
81 = 3^4
х⁴ = 3^4
x = -3 или 3
б) х⁴ + 169 = 0
Перенос :
х⁴ = -169 => Уравнение не имеет значений, так как степень числа не может быть отрицательным числом.
в) 25х⁴ - 49 = 0
Перенос :
25х⁴ = 49
49 = 7^2
25х⁴ = (5x^2)^2
25х⁴ = 7^2
5x^2 = 7
x^2 = 1,4
г) 6х⁴ - 144 = 0
144 = 12^2
16 = 4^2
(4x^2)^2 = 12^2
4x^2 = 12
x^2 = 3
Если моё решение оказалось верным, я бы хотел Вас попросить отметить мой ответ как лучший, а так же оставить отзыв о качестве моей работы (каким бы он ни был). Рад был оказать Вам
Возьмём за 1 весь объём работы., а за Х-время, за которое первый насос смог бы очистить пруд, если бы работал один, тогда время второго насоса будет (Х+2). За 1 час первый насос выполняет 1/Х часть работы, а второй насос 1/(Х+2), а работая вместе они за час выполняют (1/Х+1/9Х+2)) часть работы. Зная, что вместе они очистили пруд за 2ч55 мин (2ч55 мин=2 11/12 часа), составляем уравнение:
(1/Х+1/(Х+2))*2 11/12=1
1/Х+1/(Х+2)=12/35
35*(Х+2)+35*Х=12*Х*(Х+2)
35*Х+70+35*Х=12*Х в квадрате+24*Х
12*Х в квадрате-46*Х-70=0
Дискриминант равен 5476, а корень из дискриминанта=74.
Х1=5
Х2 не находим, так как это отрицательное число.
Значит первый насос мог бы очистить пруд за 5 часов, а второй насос за 5+2=7 часов.
можно немного по другому.просто брат такую задачу решал
х - время 1-го насоса
х+2 - время 2-го насоса
1/х - производительность 1-го насоса
1/(х+2) - производительность 2-го насоса
2 часа 55 минут = 35/12 часа
Уравнение
1/х + 1/(х+2) = 1 / (35/12)
Умножаем все члены на 35х*(х+2)
35*(х+2) + 35х = 12х*(x+2)
35x + 70 + 35x = 12x^2 + 24x
12x^2 - 46x - 70 = 0
6x^2 - 23x - 35
х1 = 5
х2 = -7/6 (не удовлетворяет условию)
х + 2 = 5 + 2 = 7
ответ:за 5 и за 7 часов