Это вид уравнения окружности, который можно использовать для определения центра и радиуса окружности.
(
x
−
h
)
2
+
(
y
−
k
)
2
=
r
2
Сопоставьте параметры окружности со значениями в ее каноническом виде. Переменная
r
представляет радиус окружности,
h
представляет сдвиг по оси X от начала координат, а
k
представляет сдвиг по оси Y от начала координат.
r
=
2
h
=
5
k
=
−
1
Центр окружности находится в точке
(
h
,
k
)
.
Центр:
(
5
,
−
1
)
Эти величины представляют важные значения для построения графика и анализа окружности.
Центр:
(
5
,
−
1
)
Радиус:
2
Область определнения данного выражения D(f)=[0,08; 2]
Объяснение:
Подкоренное выражение должно быть больше или равно 0.
\begin{gathered}1-\frac{2x-1}{3}\geq 0\\ \\ \frac{3-2x+1}{3}\geq 0\\ \\ 4-2x\geq 0\\ \\ 2x\leq4 \\ \\ x\leq2\end{gathered}
1−
3
2x−1
≥0
3
3−2x+1
≥0
4−2x≥0
2x≤4
x≤2
\begin{gathered}2x-\frac{x}{3}-\frac{2}{15} \geq 0\\ \\ \frac{6x-x}{3} \geq \frac{2}{15} \\ \\ \frac{5x*5}{15}\geq \frac{2}{15} \\ \\ 25x\geq 2\\ \\ x\geq \frac{2}{25}\\ \\ x\geq 0,08\end{gathered}
2x−
3
x
−
15
2
≥0
3
6x−x
≥
15
2
15
5x∗5
≥
15
2
25x≥2
x≥
25
2
x≥0,08
x∈[0,08; 2]
D(f)=[0,08; 2]
очень просто
6*3 + 56:14 = 18 + 4 =22