Находим производную: 4x^3 - 12x^2 +12x - 4
Приравниваем к нулю: 4x^3 - 12x^2 +12x - 4 = 0
Затем,чтобы получить красивую группировку,заменяем некоторые члены как сумму:
4x^3 - 8x^2 - 4x^2 + 8x + 4x - 4=0
(4x^3 - 4x^2) +(- 8x^2 + 8x) +( 4x - 4)=0
4x^2 (x-1) -8x (x-1) + 4 (x-1)= 0
(x-1)(4x^2-8x+4)=0
Поработаем отдельно со 2 множителем, разделим на 4
и получим X^2 - 2x +4=0
(x-1)^2=0
Теперь,получаем произведение равно нулю,либо первый множитель равен нулю,либо второй,
получаем корни
x=1 и x=-1(не входт в указанный промежуток)
Теперь считаем заначения,подставляя их в функцию
f(0)= -9
f(1) = -10 (наим)
f(4) = 71 (наиб)
ответ 4
https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cleft%20%5C%7B%20%5Cbegin%7Barray%7D%7Blcl%7D%203x%2B14%20%5Cgeq%204-x%20%5C%5C%20%5C%5C%20%5Cfrac%7B5x-1%7D%7B4%7D%20-%20%5Cfrac%7Bx-1%7D%7B2%7D%20%5Cgeq%203x-2%2C%20~%20%5CBig%20%7C%5Ctimes%204%20%5Cend%7Barray%7D%20%5Cright.%20%5C%5C%20%5C%5C%20%5C%5C%20%5C%5C%20%5Cleft%20%5C%7B%20%5Cbegin%7Barray%7D%7Blcl%7D%203x%2Bx%20%5Cgeq%204-14%20%5C%5C%20%5C%5C%20(5x-1)%20-%202(x-1)%20%5Cgeq%204(3x-2)%20%5Cend%7Barray%7D%20%5Cright.%20%5C%5C%20%5C%5C%20%5C%5C%20%5C%5C%20%5Cleft%20%5C%7B%20%5Cbegin%7Barray%7D%7Blcl%7D%204x%20%5Cgeq%20-10%20%5C%5C%20%5C%5C%205x-1%20-%202x%2B2%20%5Cgeq%2012x-8%20%5Cend%7Barray%7D%20%5Cright.