Число делится на 10 только в том случае, если оно оканчивается цифрой 0.
Посмотрим, какой цифрой оканчивается каждое слагаемое.
1) число 7 в разных степенях оканчивается разными цифрами. Попробуем установить закономерность.
Т.е. последние цифры записи степеней семерки чередуются так: 7 - 9 - 3 - 1 и по кругу.
Т.к. оканчивается цифрой 1, то
также оканчивается цифрой 1. Тогда число
оканчивается цифрой 7.
2) Для степеней четверки закономерность проще - 4 - 6 и по кругу:
Поскольку оканчивается цифрой 6, то
также оканчивается цифрой 6.
3) Закономерность для степеней тройки - 3 - 9 - 7 - 1 и по кругу:
Т.к. оканчивается цифрой 7, то
также оканчивается цифрой 7.
В итоге слагаемые оканчиваются цифрами 7, 6 и 7 соответственно. Если их сложить, то в разрядке единиц класса единиц получим 0. Т.е. число
оканчивается цифрой 0 - следовательно, оно таки делится на 10.
ОТВЕТ: да.
a = 021937 = 21 937
Теперь записываем все цифры, стоящие после запятой, но до периода, в виде натурального числа. Если вначале до первой значащей цифры идут нули, то отбрасываем их. Обозначаем полученное число буквой b.
b = 0219 = 219
Подставляем найденные значения в формулу, где Y - целая частьбесконечной периодической дроби. У нас Y = 10.Пример перевода периодической дроби в обыкновеннуюИтак, подставляем все найденные значения в формулу выше и получаем обыкновенную дробь. Полученный ответ всегда можно проверить на обычном калькуляторе.