1. А) (a+3)(a-7)-2a(3a+5) = а^2 - 7а + 3а - 21 - 6а^2 - 10а = -5а^2 -14а - 21
Б) 4b(b-2)+(b-4)² = 4b^2 - 8b + b^2 - 8b + 16 = 5b^2 - 16b + 16
В) 3(y+2)²-91 = 3 (y^2 + 4y + 4) - 91 = 3y^2 + 12 y + 12 - 91 = 3y^2 + 12 y - 79
2. a) c³-16c = c (c^2 - 16) = c (c-4)(c+4)
b) 3a²-6a+2a² = 5a^2 - 6a = a (5a-6)
3. (3x-x²)²-x²(x+2(x-2)+2x(7+3x³) = 9x^2 - 6x^3 + x^4 - x^2 (x^2 - 4 + 14x + 6x^4) = 9x^2 - 6x^3 + x^4 - x^4 + 4x^2 - 14x^3 - 6x^6 = 13x^2 - 20x^3 - 6x^6
4. a) 16a⁴ - 1 = (4a^2 - 1) (4a^2 + 1) = (2a - 1) (2a + 1) (4a^2 + 1)
b) a-a²+b+b² = (a + b) - (a^2 - b^2) = (a + b) - (a + b) (a - b) = (a + b) (1 - a + b)
не уверен шо правельно но
обоих случаях у нас квадратная функция, значит, это графики парабол. Для их построения необходимо минимум 3 точки, одна из которых - это вершина параболы.
Вершина параболы имеет какие-то координаты (х;y).
Вершину можно найти по формуле х = - b/2a
Для случая а) а =1, b = -2, c = -8. Получаем координату х = 1. Подставляем щначение х в искомое выражение и получаем координаты вершины параболы (1; -9)
Для случая б) а = -1, b = 5, c = 0. Получаем координату х = 2.5. Подставляем щначение х в искомое выражение и получаем координаты вершины параболы (2.5; 5)
Теперь берём произвольное значение x и подставляем в функцию, таким образом получаем искомые графики.
На остальные вопросы легко ответить, смотря на график.
а )дорога автобуса было 1 км
б) дарога было 800 метров